• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel particulate vaccine candidates recombinantly produced by pathogenic and nonpathogenic bacterial hosts : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology at Massey University, Manawatu, New Zealand.

    Icon
    View/Open Full Text
    01_front.pdf (95.21Kb)
    02_whole.pdf (7.626Mb)
    Export to EndNote
    Abstract
    Polyhydroxyalkanoates (PHAs) are biopolyesters synthesized as small spherical cytoplasmic inclusion bodies by a range of bacteria. Recently, PHA beads have been investigated for use as a vaccine delivery platform by using engineered heterologous production hosts that allowed the efficient display of vaccine candidate antigens on the beads surface and were found to greatly improve immunogenicity of the displayed antigens. However, like other subunit vaccines, these antigen-displaying (vaccine) PHA beads only provide a limited repertoire of antigens. In this thesis we investigate the idea of directly utilizing the disease causative pathogen or model organism to produce vaccine PHA beads with a large antigenic repertoire. These beads are hypothesized to have the potential to induce greater protective immunity compared to production of the same PHA bead in a heterologous production host. This concept was exemplified with Pseudomonas aeruginosa and Mycobacterium tuberculosis as model human pathogens. For P. aeruginosa we describe the engineering of this bacterium to promote PHA and Psl (polysaccharide) production. This represents a new mode of functional display for the engineering, production, and validation of a novel OprI/F-AlgE fusion antigen-displayed on PHA beads. For the disease tuberculosis we investigated the use of nonpathogenic M. smegmatis as a model organism for M. tuberculosis. We described the bioengineering, production, and validation of Ag85AESAT- 6 displayed on PHA beads produced in M. smegmatis. Here we showed that both organisms were harnessed to produce custom-made PHA beads for use as particulate subunit vaccines that carried copurifying pathogen-derived proteins as a large antigenic repertoire and the ability of these vaccine PHA beads to generate a protective immune response. This novel bioengineering concept of particulate subunit vaccine production could be applied to a range of pathogens naturally producing PHA inclusions for developing efficacious subunit vaccines for infectious diseases.
    Date
    2017
    Author
    Lee, Jason Wong
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/11386
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1