• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessing tail-related risk for heteroscedastic return series of Asian emerging equity markets : a thesis presented in partial fulfillment of the requirements for Master of Business Studies at Massey University

    Icon
    View/Open Full Text
    01_front.pdf (434.2Kb)
    02_whole.pdf (9.829Mb)
    Export to EndNote
    Abstract
    High degrees of leptokurtosis, heteroscedasticity and asymmetries in return series are the common features of Asian emerging equity markets, especially during the financial crisis. Thus, strengthening risk management with improved risk measures becomes increasingly important. According to the Basle Committee on Banking Supervision, the value at risk (VaR) should be calculated at the 99% confidence level or above with daily data. In the context of Asian equity markets, the use of the estimated conditional variance of market returns as the sole measure of market risk may result in serious underestimation of the true risk caused by tail events. Therefore, this research focuses on the tail-related risk measure of nine Asian index returns within the framework of extreme value theory. It employs the generalized extreme value (GEV) and the generalized Pareto distribution (GPD) approaches combined with AR(l)-GARCH(m, s) filtering of the return data. The VaR performances under different distributions with different volatility filtering are compared, and the estimated conditional and unconditional expected shortfalls based on the GPD are reported. The important findings include the following. (1) The nine heteroscedastic index returns indeed follow heavy-tailed distributions rather than the normal distribution. (2) Both the GPD and GEV distributions of daily returns are asymmetric between local maxima (right tail) and local minima (left tail). (3) The results of the GEV approach are somewhat sensitive to the block length chosen, while the GPD approach, with the thresholds determined much less arbitrarily, can avoid equivocalness with the GEV method. (4) The reported results indicate that the VaR based on the extreme value theory at high quantiles (above 99%) is more accurate than the VaR based on the normal distribution.
    Date
    2003
    Author
    Xu, Qing
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/11637
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1