• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Qualified difference sets : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand

    Icon
    View/Open Full Text
    02whole.pdf (447.5Kb)
    01front.pdf (116.8Kb)
    Export to EndNote
    Abstract
    Qualified difference sets are a class of combinatorial configuration. The sets are related to the residue difference sets that were first discussed in detail in 1953 by Emma Lehmer. Qualified difference sets consist of a set of residues modulo an integer v and they possess attractive properties that suggest potential applications in areas such as image formation, signal processing and aperture synthesis. This thesis outlines the theory behind qualified difference sets and gives conditions for the existence and nonexistence of these sets in various cases. A special case of the qualified difference sets is the qualified residue difference sets. These consist of the set of nth power residues of certain types of prime. Necessary and sufficient conditions for the existence of qualified residue difference sets are derived and the precise conditions for the existence of these sets are given for n = 2, 4 and 6. Qualified residue difference sets are proved nonexistent for n = 8, 10, 12, 14 and 18. A generalisation of the qualified residue difference sets is introduced. These are the qualified difference sets composed of unions of cyclotomic classes. A cyclotomic class is defined for an integer power n and the results of an exhaustive computer search are presented for n = 4, 6, 8, 10 and 12. Two new families of qualified difference set were discovered in the case n = 8 and some isolated systems were discovered for n = 6, 10 and 12. An explanation of how qualified difference sets may be implemented in physical applications is given and potential applications are discussed.
    Date
    2009
    Author
    Byard, Kevin
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/1204
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1