• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A functional analysis of RYR1 mutations causing malignant hyperthermia : a thesis presented to Massey University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry

    Icon
    View/Open Full Text
    02whole.pdf (4.790Mb)
    01front.pdf (319.3Kb)
    Export to EndNote
    Abstract
    Malignant hyperthermia (MH) is a rare pharmacogenetic disorder in humans induced by volatile anaesthetics and depolarising muscle relaxants. An MH reaction shows abnormal calcium homeostasis in skeletal muscle leading to a hypermetabolic state and increased muscle contracture. A mutation within the skeletal muscle calcium release channel ryanodine receptor gene (RYR1) is associated with MH and is thought to cause functional defects in the RYR1 channel leading to abnormal calcium release to the sarcoplasm and consequent MH reactions. Mutations within RYR1 are also associated with a rare congenital myopathy, central core disease (CCD). CCD is characterised by muscle weakness and is thought to be caused by insufficient calcium release from the RYR1 channel during excitation-contraction (EC) coupling. To investigate functional effects of RYR1 mutations, the entire coding region of human RYR1 was assembled and cloned into an expression vector. Mutant clones containing RYR1 mutations linked to MH or CCD were also constructed. Wild-type (WT) and mutant RYR1 clones were used for transient transfection of HEK-293 cells. Western blotting was performed after harvesting and expressed WT and mutant RYR1 proteins were successfully detected. Immunofluorescence showed co-localisation of RYR1 proteins and the endoplasmic reticulum in HEK-293 cells. [3H]ryanodine binding assays showed that RYR1 mutants linked to MH were more sensitive to the agonist 4-chloro-m-cresol (4-CmC) and less sensitive to the antagonist Mg2+ compared with WT. Two C-terminal RYR1 mutants T4826I and H4833Y were very significantly hypersensitive to 4-CmC and they may also result in a leaky channel. This hypersensitivity of mutants linked to MH may result in abnormal calcium release through the RYR1 channel induced by triggering agents leading to MH reactions. RYR1 mutants linked to CCD showed no response to 4-CmC showing their hyposensitive characteristics to agonists. This study showed that the human RYR1 proteins could be expressed in HEK-293 cells. Moreover, using the recombinant human RYR1 clone, a single mutation within RYR1 resulted in a functional defect in expressed RYR1 proteins and functions of mutant RYR1 proteins varied from hypersensitive to hyposensitive depending on the mutation and whether it was linked to MH or CCD.
    Date
    2009
    Author
    Sato, Keisaku
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/1228
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1