• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Physiology of rumen bacteria associated with low methane emitting sheep : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Microbiology and Genetics at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (219.1Kb)
    02_whole.pdf (9.609Mb)
    Export to EndNote
    Abstract
    The fermentation of feed and formation of methane (CH4) by ruminant animals occur in the rumen, and both are microbial processes. There is a natural variation in CH4 emissions among sheep, and this variation is heritable. Therefore, breeding for sheep that naturally produce less CH4 is a viable strategy to reduce anthropogenic greenhouse gas emissions. Rumen bacteria play a major role in feed fermentation and in the formation of hydrogen (H2) or formate, which are converted to CH4 by other rumen microbes called methanogens. It has been shown that rumen bacterial community compositions in low CH4 emitting sheep differ to those in high CH4 emitting sheep. This led to the hypothesis that the metabolism of dominant rumen bacteria associated with low CH4 emitting sheep should explain the lower CH4 yield, for example by producing less H2 or formate than bacteria associated with high CH4 emitting sheep. In this project, the diversity and physiology of members of the bacterial genera Quinella, Sharpea and Kandleria, which are major bacterial groups associated with low-CH4 emitting sheep, were investigated. It appeared that the genus Quinella is more diverse than previously suspected, and might contain at least eight potential species, although to date none have been maintained in laboratory culture. Sharpea and Kandleria contain two and one species respectively. Experiments with Sharpea and Kandleria showed that these behave like classical lactic acid bacteria that produce lactate as their major end product and did not change their fermentation pattern to produce more H2 or formate when grown in the presence of methanogens. This strengthens a previous hypothesis that sought to explain low CH4 emissions from sheep with Sharpea and Kandleria in their rumens, in which this invariant production of lactate was a key assumption. Quinella is another bacterium found in larger numbers in the rumen of some low CH4 sheep. Virtually nothing is known about its metabolism. FISH probes and cell concentration methods were developed which helped in its identification and resulted in construction of four genome bins of Quinella that were more than 90% complete with as little as 0.20% contaminated. Bioinformatic analyses of the proteins encoded by these genomes showed that Quinella has the enzymes for lactate formation and for the randomising pathway of propionate formation. This indicated that lactate and propionate might be major fermentation end products of Quinella. Additionally, the presence of an uptake hydrogenase in the Quinella genomes opens up the new possibility that Quinella might even use free H2 in the rumen. In all these possible pathways, little or no H2 would be produced, explaining why an increased abundance of Quinella in the rumen would lead to lower CH4 emissions from those sheep with high abundances of this bacterium.
    Date
    2017
    Author
    Kumar, Sandeep
    Rights
    The Author
    Publisher
    2017
    Description
    Figures 1.1 & A6.1 used with permission
    URI
    http://hdl.handle.net/10179/13403
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1