• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mathematical model of the forced cooling of anodes used in the aluminium industry : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Mathematics at Massey University

    Icon
    View/Open Full Text
    01_front.pdf (306.4Kb)
    02_whole.pdf (2.012Mb)
    Export to EndNote
    Abstract
    The aluminium industry consumes large amounts of electrodes, especially anodes, to operate the smelters. These anodes must be baked at high temperatures in order to give them certain mechanical and electrical properties, after which they are cooled. Baking is done in large furnaces made up of pits inside which the anodes are placed in layers and surrounded by packing coke. The furnaces are of two types - open and closed. In a closed furnace, the pits are lined with refractory bricks inside which flues run vertically and large covers are used to close over parts of the furnace. This thesis presents a mathematical model of part of a forced cooling section of a closed furnace, where air is being sucked or blown through the flues by fans, so that the anodes cool more rapidly. Both one- and two-dimensional models are developed in order to calculate the transient temperature distribution in the anodes, packing coke and side flue wall. For the two-dimensional model, the transient temperature and pressure distributions of the air in the side wall flues and fire shafts are also calculated. After exploring an analytical method for the one-dimensional case, numerical techniques are used thereafter. Given initial block and air temperatures, the two-dimensional model allows calculation of the appropriate temperature and pressure distributions for various mass flows of air in the side wall flues and fire shafts. The results show that for a sufficiently high mass flow, the anodes can be cooled enough so that they can be safely removed from the pits after three fire cycles (the length of time the anodes are exposed to forced cooling).
    Date
    1994
    Author
    Palliser, Christopher Charles
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/14792
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1