• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The preventive effect of greenshell mussel meat against osteoarthritis in vivo : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Health Science At Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    SiriarchavatanaPhDThesis.pdf (7.547Mb)
    Export to EndNote
    Abstract
    Osteoarthritis (OA) is identified by progressive cartilage erosion of synovial joints. One of the most prevalent OA phenotypes, metabolic OA (MetOA), is linked to metabolic syndrome (MetS). MetS is a combination of obesity, type II diabetes, hypertension, and hyperlipidemia; the effects of these disorders can lead to the development of MetOA. Osteoporosis is characterised by loss of bone mineral density and is causally linked with a decrease in systemic estrogen levels. As MetS, OA and osteoporosis are all prevalent in postmenopausal women, it is possible they may be causally linked. For example, systemic low-grade inflammation in MetS may trigger inflammation in both joints and bone, which could be further aggravated by high fat/high sugar diet (HFHS)-induced obesity and gut dysbiosis. We hypothesized that chronic inflammation would be correlated with MetOA development and therefore decreasing inflammation would be protective. New Zealand greenshell mussel (GSM) contains anti-inflammatory properties shown to reduce OA symptoms and omega-3 fatty acids shown to reduce the development of post-menopausal osteoporosis. We hypothesized GSM could protect against both MetOA and osteoporosis reducing bone resorption, inhibiting inflammation and/or modulating beneficial gut microbes. In vitro, non-polar GSM lipids demonstrated bone-protective properties and significantly reduced osteoclast differentiation, tartrate-resistant acid phosphatase activity, actin ring formation and gene expression of matrix metalloproteinase, cathepsin K, carbonic anhydrase and nuclear factor of activating T cells 1. In vivo, aging, HFHS and OVX produced a rat model mimicking human MetS. Dietary whole GSM powder provided protection by significantly reducing a biomarker of collagen degradation and subsequent joint damage, as well as improving short-term bone mineral density and lean mass accrual. GSM-induced changes in gut microbiota were not correlated with dysbiosis. No changes in inflammatory markers were found, disproving our initial hypothesis and suggesting that chronic inflammation may not be a critical factor in MetOA. In conclusion, GSM as a dietary intervention may reduce the incidence or progression of MetOA but not via altering systemic inflammation or gut dysbiosis.
    Date
    2021
    Author
    Siriarchavatana, Parkpoom
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/16523
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1