• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Targeting DNA secondary structures using chemically modified oligonucleotides : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry, Massey University, Palmerston North, New Zealand. EMBARGOED to 7 July 2024.

    Icon
    Export to EndNote
    Abstract
    Chemical modifications bring in additional features to oligonucleotides (ONs), including enhanced stability against nucleases, increased binding affinity towards DNA or RNA, improved cellular uptake, etc. This Thesis describes several strategies and chemical modifications used for targeting DNA duplexes and G-quadruplexes. We introduced a pyrene analogue, (R)-1-O-[2-(1-pyrenylethynyl)phenylmethyl]-glycerol, called ortho-TINA (twisted intercalating nucleic acid) monomer into a native duplex DNA. The affinity of ortho-TINA modified strands was low to each other, whereas the affinity of ortho-TINA sequence towards complementary DNA was increased. This property of ortho-TINA duplex was applied for targeting native duplexes in a sequence-specific manner using a process called dual duplex invasion (DDI). The speed of DDI is increased with the increased number of ortho-TINA pairs present in the duplex, as well as with the rise of temperature from 4 to 37 ℃. However, DDI against duplexes longer than the probe is compromised. To improve the kinetics of DDI, we designed and synthesised DNA probes with zwitterionic moieties, 4‐(trimethylammonium)butylsulfonyl phosphoramidate groups (N+), in which the negatively charged phosphate is neutralised by the positively charged quaternary amine.--Shortened abstract
    Date
    2021
    Author
    Su, Yongdong
    Rights
    The Author
    Publisher
    Massey University
    Description
    Embargoed to 7 July 2024.
    URI
    http://hdl.handle.net/10179/16750
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1