• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational approaches to the calculation of spectroscopic, structural and mechanical properties of polysaccharide chains : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Massey University

    Icon
    View/Open Full Text
    02_whole.pdf (3.217Mb)
    01_front.pdf (249.8Kb)
    Export to EndNote
    Abstract
    In this thesis atomistic, statistical mechanical and coarse grained simulation techniques are used to study the properties of biopolymers and in particular the plant polysaccharide pectin. Spectroscopic aspects, structural and conformational behavior, and mechanical properties of the molecule in di erent physical states are addressed. After an introduction to the area and the theoretical techniques utilised herein (chapter 1), chapter 2 deals with the spectroscopic characterisation of pectin. Spectra were obtained theoretically by undertaking complete energy minimisation and Hessien calculations using DFT techniques implemented in Gamess (PC & US) packages. The calculated IR absorptions of di erent pectinic species and oligomers coupled on di erent surfaces were compared with experimental results. Herein, it is con rmed that experimental FTIR studies coupled with DFT calculations can be used as an e ective tool for the characterisation of pectin, and studying chemical coupling of the biopolymer to surfaces. In chapter 3, the properties of single chain polymer systems in controlled solvent conditions were studied using Brownian dynamics simulations, motivated by the formation of secondary structure architectures in biopolymer systems. We focus on the conformational properties of the chain in the presence of an additional torsional potential. New, interesting, and biologically relevant structures were found at the single molecule scale when a torsional potential was considered in the calculations. In chapter 4, results from DFT calculations carried out on single pectin sugar molecules (lengths and the free energies) are incorporated into a statistical mechanical model of polymer stretching, in order to obtain the force-extension behaviour of a single molecule pectin. This captures a good deal of the phenomenology of the single molecule stretching behavior of pectin. Chapter 5 summarises the conclusions of the work and nally chapter 6 suggests direction for further work.
    Date
    2010
    Author
    Anjukandi, Padmesh
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/1826
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1