• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evolutionary analyses of large data sets : trees and beyond : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University

    Icon
    View/Open Full Text
    02_whole.pdf (2.830Mb)
    01_front.pdf (876.3Kb)
    Export to EndNote
    Abstract
    The increasing amount of molecular data available for phylogenetic studies means that larger, often intra-species, data sets are being analysed. Treating such data sets with methods designed for small interspecies data may not be useful. This thesis comprises four projects within the field of phylogenetics that focus on cases where the application of current tree estimation methods is not sufficient to answer the biological questions of interest. A simulation study contrasts the accuracy of several tree estimation methods for a particular class of five-taxon, equal-rate, trees. This study highlights several difficulties with tree estimation, including the fact that some tree topologies produce “misleading" patterns that are incorrectly interpreted; that correction for multiple changes does not always increase accuracy, because of increased variance; and the difficulty of correctly placing outgroup taxa. A mitochondrial DNA data set, containing over 400 modern and ancient Adélie penguin samples, is used to estimate the rate of evolution. Straightforward tree-estimation is unhelpful because the amount of homoplasy in the data makes the construction of a single reliable tree impossible. Instead the data is represented by a network. A method, that extends statistical geometry, assesses whether or not a data set can be well-represented by a tree. The "tree-likeness" of each quartet in the data is evaluated and displayed visually, either for the entire data set or by taxon. This aids in identifying reticulate (or simply noisy) data sets, and also particular taxa that confound tree-like signal. Novel methods are developed that use pairwise dissimilarities between isolates in intra-species microbial data sets, to identify strains that are good representatives of their species or subspecies.
    Date
    2001
    Author
    Holland, Barbara Ruth
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/2078
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1