• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Origins and evolution of the New Zealand forest flora : a molecular phylogenetic approach : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Biology at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (5.281Mb)
    01_front.pdf (1.048Mb)
    Export to EndNote
    Abstract
    The origins and evolution of the New Zealand flora have puzzled the imagination of botanists world-wide. Competing hypotheses have sought to explain the floristic relationships between New Zealand and other Southern Hemisphere landmasses. Scientific approaches have involved geology, plant morphology, palynology and palaeobotany in investigations of the distribution patterns of these floras. Analyses presented in the current thesis use molecular data to investigate phylogenetic relationships of plant lineages native to the New Zealand forest flora. In the present thesis, molecular work included amplification and sequencing of standard DNA markers such as nuclear ribosomal DNA, ndhF and rbcL gene sequence. These data were obtained for New Zealand and overseas species of Myrsinaceae, Nothofagaceae and genus Agathis (Araucariaceae). Analyses of these data have been presented alongside results and re-analyses of genetic data for Podocarpaceae, Proteaceae, Winteraceae and genus Metrosideros (Myrtaceae). These analyses aimed to synthesise recent work and provide a framework for further molecular investigations into the origins of the New Zealand woody forest flora. Amplified fragment length polymorphism (AFLP) was used to locate polymorphic genome regions that were converted into sequence specific DNA markers. Information from AFLP and AFLP derived markers was used to elucidate evolutionary processes as well as interspecific and intraspecific relationships between closely related taxa of Myrsine and Nothofagus. DNA analyses showed that the New Zealand forest hosts plants with very different origins and evolutionary histories. Results presented in the current thesis support hypotheses of vicariance and long-distance dispersal across Southern Hemisphere lands. Molecular data are consistent with a continuous presence of Agathis (Araucariaceae), Dacrydium (Podocarpaceae) and Pseudowintera (Winteraceae) on the New Zealand archipelago since the break-up of the Gondwanan supercontinent. It is proposed that extant species of these lineages have evolved from ancestors that arrived on the New Zealand landmass during the Cretaceous. In contrast, divergence time estimates on Nothofagus suggest that relationships between extant Fuscaspora and Lophozonia beeches date back to the Mid Tertiary and are not explained by vicariance and continental drift. Phylogenetic analyses substantiate fossil evidence of a Tertiary arrival of Metrosideros (Myrtaceae), Myrsine (Myrsinaceae). Knightia and Toronia (both Proteaceae). Similarly, dispersal from New Zealand to other southern lands has been inferred for Metrosideros and Myrsine. These findings and those reported earlier for alpine plant groups suggest that trans-oceanic dispersal is likely to be an important explanation of floristic relationships between New Zealand and other distant landmasses. Molecular studies on New Zealand Myrsine suggest recent speciation events, geographic differentiation and ongoing hybridisation between some morphologically and ecologically distinct species Intraspecific analyses on Myrsine divaricata and Nothofagus menziesii show that extant distribution patterns within New Zealand are relatively recent and may have developed during the Quaternary. Although both lineages have an ancient history on the New Zealand archipelago, it is concluded that species and their distributions - including that of the monotypic genera Elingamita - are of recent origin.
    Date
    2001
    Author
    Stöckler, Karen
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/2109
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1