• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The feasibility of pervaporation in the purification of ethanol : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Process and Environmental Technology at Massey University

    Icon
    View/Open Full Text
    02_whole.pdf (13.49Mb)
    01_front.pdf (2.113Mb)
    Export to EndNote
    Abstract
    This study investigated how pervaporation could be incorporated into hybrid schemes for purifying ethanol produced from whey of fusel oils and whether this could be achieved at a lower energy cost than distillation alone whilst maintaining product quality within specification. In order to achieve these objectives the project included: investigation of fundamental pervaporation mechanisms and the influence of operation parameters, simulation of the distillation train at the New Zealand Distillery Co. Ltd. (NZDCL) including pervaporation relationships developed during this study, and pinch analysis of the NZDCL. Aqueous solutions of 5 to 20% w/w ethanol with approximately 1% w/w of a mixture of n-propanol, i-butanol, n-butanol, i-amyl alcohol and ethyl acetate were pervaporated through a disk apparatus fitted with either poly-ether-block-amide (PEBA) or poly(dimethyl siloxane) membranes. Similar solutions were sorbed into PEBA beads for the study of sorption. A new, semi-empirical relationship between enrichment factor of alcohols during pervaporation and their molecular size and activity coefficient in the feed stream was proposed. It was observed that for organophilic membranes, sorption generally sets the enrichment factor while the influence of diffusion becomes relevant only when the distribution range of the size of the molecules involved is quite large. In consequence, it is recommended that the study of sorption and diffusion relationships between solvents and dense polymers be given priority as they are relevant for the fast development of this technology. During pervaporation, the temperature of the feed affected mainly the process economics, as an increase in temperature resulted in an exponential increase in the total flux, without significantly changing the product composition. The flux of the minor components studied was independent of the total flux through the membrane except for the i-amyl alcohol, which had its flux influenced by the total flux possibly due to its higher concentration. For the removal of fusels from the fermentation broth with organophilic membranes, all three commercially available membranes investigated presented similar enrichment factors and, compared to evaporation, did not significantly improve the separation of fusels from ethanol. The membranes investigated differed amongst each other with respect to their total flux; the higher the flux through the membrane, the lower the membrane area required for a specific separation. Hydrophilic membranes were used to remove the water fraction at an earlier stage of distillation. Simulation and experiments of the new process showed that it was possible to reduce design complexity and energy expenditure by approximately ten percent. This process could become economically feasible if membrane price dropped by over 60%. Pinch analysis and simulation results of distillation were combined to investigate immediate opportunities to reduce energy usage at NZDCL. Changes in the heat exchanger network and in the distillation feed temperature could reduce production costs (steam usage) without compromising product quality and plant flexibility.
    Date
    1998
    Author
    Ferreira, Lilian de Barros
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/2593
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1