• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mapping the mind with broken theodolites : contributions to multidimensional scaling methodology, with special application to triadic data, and the sorting and hierarchical sorting methods : a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Human Development Studies at Massey University

    Icon
    View/Open Full Text
    01_front.pdf (1.881Mb)
    02_whole.pdf (8.932Mb)
    Export to EndNote
    Abstract
    This thesis focuses on the psychological applications of Multidimensional Scaling (MDS) theory and methodology. The results are investigated of treating certain kinds of dissimilarity data (triadic data, to begin with) as comparisons between dissimilarities. This is a familiar idea but many of its implications are unexplored. First, when data are available from more than one subject, it becomes possible to apply models of individual variation, in non-metric form. The Weighted Euclidean (or INDSCAL) model is the one used most often in this thesis, but the more general IDIOSCAL model is used to investigate individual differences in the case of colour vision. The data sets need not be complete. This is important when the size of the stimulus set means that there are too many comparisons for a single subject to respond to them all. Second, Maximum Likelihood Estimation (MLE) becomes a straightforward generalisation of the standard hill-descent algorithm for minimising Stress. Third, data collected with the sorting and hierarchical sorting methods can also be regarded as dissimilarity comparisons. The convenience of the sorting method and the lesser demands it makes on subjects when the number of stimuli is large have led to its widespread use, but the best way of analysing such data is uncertain. A 'reconstructed dyad' analysis is described and shown to be better than the usual co-occurence approach in a number of examples in which evidence about the true perceptual or conceptual space is available independently. Finally, when the data are interpreted as dissimilarity comparisons, an interactive method of scaling large stimulus sets becomes possible, in which one selectively acquires incomplete data, concentrating on comparisons which are expected to contain most information about the configuration. This approach has been applied twice, with the stimuli being simple synthesised sounds in one example, and complex natural sounds (canine heartbeats) in the second, working well in both cases. The potential applications for training people to recognise sounds are briefly considered. Some possibilities for future research arising from this work are described.
    Date
    1995
    Author
    Bimler, D L
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/3961
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1