• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Eukaryotic signature proteins : guides to pathogenic eukaryotic parasites : a thesis presented in partial fulfilment of the requirements of the degree of PhD in Genetics at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (2.738Mb)
    01_front.pdf (124.1Kb)
    Export to EndNote
    Abstract
    Eukaryotic Signature Proteins (ESPs) are proteins that delineate the eukaryotes from the archaea and bacteria. They have no homologues in any prokaryotic genome, but their homologues are present in all main branches of eukaryotes. ESPs are thus likely to have descended from ancient proteins that have existed since the first eukaryotic cell. This project looks at ESPs of some eukaryotic parasites and human (Homo sapiens) as their host organism and focuses on Giardia lamblia, a fresh water pathogenic basal eukaryote. The ESP datasets from Giardia and two other parasites, Trichomonas vaginalis and Plasmodium falciparum, as well as the host human were calculated in light of available genomic data and the datasets contained a range of proteins associated with membrane, cytoskeleton, nucleus and protein synthesis. ESPs have great potential in phylogenetic studies since these proteins are present in all eukaryotes and are expected to have a slow and constant rate of evolution. Phylogenetic analyses were performed on the 18 eukaryotic organisms including some basal eukaryotes, and also for mammals, using orthologues of the all ESPs from these organisms. Strategies such as concatenating sequences and constructing consensus networks were tested to evaluate their potential with large numbers of ESP alignments. The results were promising, and ESPs hold great potential for their use in future phylogenetic analyses of eukaryotes. RNA interference is hypothesised to be an ancient mechanism for gene regulation and like the ESPs, it is typically found in all main branches of eukaryotes. High throughput sequencing data from Giardia and Trichomonas small RNAs (15-29mers) were re-analysed showing two length peaks for Giardia RNAs: a “larger peak” and an “ultra small peak”, the former of which is likely to be the product of the enzyme Dicer, which processes miRNA. The “ultra small peak” but not the “larger peak” was also found in Trichomonas. The two peaks possibly represent two different mechanisms of RNA interference (RNAi) in these parasites, but analysis of potential target sites from the Dicer-processed RNAs has not yet shown any indication that ESPs are regulated any differently from other parasite proteins. Sugar metabolic pathways including glycolysis and citric acid cycle were searched for ESPs, this was done to determine the relationship between the conservation of eukaryotic metabolic pathways and conservation of individual proteins. However no ESPs were identified from these pathways because Giardia has enzymes that show more similarity to those from prokaryotes than eukaryotes. These enzymes are significantly different from that of the host‟s, and these alternative enzymes offer potential as novel drug targets. In addition, ESPs that are present from host but lost in some parasites were analysed, and these ESPs are involved in many understudied pathways. It is these differences which can provide a guide in determining which pathways we should examine when designing drug targets. Overall, numerous proteomic similarities and differences in ESPs were identified between host and parasite. These proteins show potential for future evolutionary studies, and will guide future directions in ancestral eukaryotic regulation and metabolism.
    Date
    2012
    Author
    Han, Jian
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/4068
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Related items

    Showing items related by title, author, creator and subject.

    • Icon
      Title:
      Computational Identification of Four Spliceosomal snRNAs from the Deep-Branching Eukaryote Giardia intestinalis 
      Author:
      Chen, Xiaowei Sylvia; White, W. Timothy J.; Collins, Lesley J.; Penny, David
      Date:
      2008-08-29
    • Icon
      Title:
      Genomes in space and time : insights into the functional three-dimensional organization of prokaryotic and eukaryotic genomes in response to environmental stimuli and cell cycle progression : a thesis presented in partial fulfilment of the requirements for the degree of Doctorate in Philosophy in Genetics at Massey University, Albany, New Zealand 
      Author:
      Grand, Ralph Stefan
      Date:
      2014
    • Icon
      Title:
      The origins and evolution of prokaryotes and eukaryotes : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Molecular BioSciences at Massey University 
      Author:
      Poole, Anthony Masamu
      Date:
      2001

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1