Abstract
Let = ( 1, · · · , m) be a partition of k. Let r (n) denote the number of solutions in
integers of 1x21
+ · · · + mx2
m = n, and let t (n) denote the number of solutions in non
negative integers of 1x1(x1 +1)/2+· · ·+ mxm(xm +1)/2 = n. We prove that if 1 k 7,
then there is a constant c , depending only on , such that r (8n + k) = c t (n), for all
integers n.
Citation
Chandrashekar, A., Cooper, S., Han, J.H. (2004), General relations between sums of squares and sums of triangular numbers, Research Letters in the Information and Mathematical Sciences, 6, 157-161
Date
2004
Publisher
Massey University