• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The pattern and processes of genome change in endosymbionts old and new : a thesis presented in partial fulfilment of the requirement for the degree of Doctor of Philosophy in Evolutionary Biology, Institute of Molecular BioSciences, Massey University, New Zealand

    Icon
    View/Open Full Text
    03_Digital_Appendix.zip (4.493Mb)
    02_whole.pdf (8.159Mb)
    01_front.pdf (109.3Kb)
    Export to EndNote
    Abstract
    Bacterial endosymbionts are an important part of eukaryote evolution as they allow their hosts to exploit bacterial abilities. Plastids, the organelles that enable plant and eukaryotic algae tophotosynthesise are ancient cyanobacterial endosymbionts. Since the initial symbiosis ~1.5 billion years ago the majority of their genes has been lost or transferred to their host’s nucleus. This process has carried on independently in the different lineages following the diversification of the lineage. I have compiled a comprehensive data set of fully sequenced plastid genomes to systematically study the frequency of gene transfers from the plastid to the nucleus across the different lineages.Following the reconstruction of the Plantae phylogenetic tree from plastid encoded proteins, gene loss events were reconstructed along its branches. My calculations show that gene losses have occurred at a relative high frequency and in a lineage specific way. This challenges the original idea that gene transfers from the organelle to the nucleus are rare and chance driven events. Bacteria and eukaryotes continue to form endosymbioses and the study of these relationships produces valuable insights into the early stages of organelle evolution, bacterial metabolic pathways and metabolic regulation. They also allow us a glimpse into the ancient history of eukaryote evolution. For this reason, diatoms that have acquired cyanobacterial endosymbionts with the capability to fix molecular nitrogen were chosen to explore the potential and limitations of high-throughput sequencing technologies for investigating this type of relationship when DNA sequences are obtained from environmental samples and in the presence of bacterial contaminants. The results of this work confirmed the suitability of this relatively new technology to sequence mixed samples but also highlighted i) difficulties in sample preparation which can bias the composition of metagenomic samples obtained, and also ii) the varying suitability of different types of samples used in high-throughput sequencing.
    Date
    2012
    Author
    Schönfeld, Barbara Inge Karoline
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/4719
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1