• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comprehensive study on the relative importance of disulphide and non-covalent interactions between proteins on the heat-induced aggregation and funcitonal property of acid milk gels : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Albany, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (355.9Kb)
    02_whole.pdf (14.24Mb)
    Export to EndNote
    Abstract
    Understanding the interactions between the milk proteins during heat treatment of milk can be employed to manipulate the functional properties of dairy products. The ability to control the functional properties can be beneficial to the dairy industry. When being heated, milk proteins interact via two main types of bonding: disulphide bonds and non-covalent interactions. They are both considered to be important in the properties of heated milks and the resulting milk products. This research aimed to investigate the relative importance of each interaction type on the heat-induced aggregation between the proteins in milk and the functional properties of a milk product in a model food system. Experiments involved adding low concentrations of a disulphide-bond reducing agent or a thiol blocking reagent to milk systems to either enhance or inhibit the thiol-disulphide exchange reactions between the proteins. The reagent was added to unheated milks, heated milks and unheated milks followed by heating. The effect of modifying the extent of thiol-disulphide exchange reactions between the proteins on the level of proteins participating in intermolecular disulphide bonds, on the degree of interactions between the casein micelles/casein proteins and the whey proteins were investigated. The treated milks were acidified to form acid milk gels of which the rheological properties and the microstructure were examined. Results demonstrated that the proportion of proteins participating in intermolecular disulphide bonds can be controlled by systematically modifying the thiol-disulphide exchange reactions between the milk proteins. It was shown that the initial interactions between the proteins in milk upon heating were non-covalent and disulphide bonds were subsequently formed to strengthen the bonding between the proteins in the heat-induced aggregates. When the milks were made to acid gels, both types of protein interactions in the milk were equally important in influencing the storage modulus (Gʹ) values of the resulting gels with the higher the degree of connections, the higher the Gʹ values. On the other hand, disulphide bonds played a more important role than non-covalent interactions in determining the yield properties of the acid gels. The yield stress values can be increased by increasing the proportion of disulphide bonds in the milk system before acidification or by enhancing the formation of disulphide bonds between the particles during the formation of acid gels.
    Date
    2014
    Author
    Nguyen, Nguyen Hong Anh
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/5484
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1