• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ecology of migrant shorebirds in New Zealand, focussing on Farewell Spit, north-west Nelson : a thesis presented in partial fulfilment of the requirements for the degree of Masterate in Ecology at Massey University

    Icon
    View/Open Full Text
    01_front.pdf (1.688Mb)
    02_whole.pdf (31.49Mb)
    Export to EndNote
    Abstract
    Migratory shorebirds are a dynamic component of New Zealand's coastal fauna, alternating between distant breeding and non-breeding grounds. The Red Knot Calidris canutus, Bar-tailed Godwit Limosa lapponica and Pied Oystercatcher Haematopus ostralegus finschi were studied on Farewell Spit, North-West Nelson. The first two species breed in the Arctic and migrate to New Zealand for the non-breeding season. Over the southern summer they experience low thermostatic costs and generally improving prey conditions over the summer. Oystercatchers are resident over autumn and winter, so experience rising costs and declining prey quality in some species. One bivalve species, Macomona liliana, shows seasonal depth changes in the sediment, and so is largely inaccessible even to a long-billed bird such as the oystercatcher. Despite this, oystercatchers feed for less time than is available, and achieve intake rates sufficient to cover estimated needs. The energy needs of the Arctic waders rise as they prepare to migrate, and they achieve at least part of this by increasing the duration of feeding. Knots during spring tides in the premigratory period feed for the entire low-water period. Godwits are apparently less stressed, underutilising nocturnal feeding opportunities over summer. They are thought to increase feeding time by using this night-time feeding. The high energy demands for migrating birds come from the need to deposit nutrients for migration, and knots around the Auckland region are estimated to increase in mass from 115 to 185 g prior to migration. Fat deposition is not the only physiological preparation, however, and a sample of knots shot from Northland (illegally, recovered by DoC) revealed complex interactions between organs. Large amounts of fat were deposited, mostly in a subcutaneous layer but also in the abdominal cavity. Muscle protein was also deposited in flight and heart muscles, presumably to prepare for the extreme effort involved in trans-oceanic flights. At the same time, digestive organs decreased in mass. This is interpreted as freeing up muscle protein which is then deposited in organs for use during flight. Knots and godwits migrated from Farewell Spit in March. Most departures occurred in the evening and on rising tides. The former probably allows for the use of multiple navigational cues, while the latter may maximise feeding opportunities immediately before the flight. Most departures occurred after the passage of a low-pressure system or with the approach of a high-pressure system. This enabled favourable winds to be gained, so that the mean wind vector was a small tailwind. Thus, while departure directions were intermediate between the expected directions for flights to either Australia or northern New Zealand, it is probable they were able to fly across the top of a high-pressure system and gain wind assistance for a direct flight to Australia. However, the variability in flight range estimates depending on assumptions of travel-speed and protein deposition makes predicting migration routes difficult. Numbers of godwits have increased on Farewell Spit over the past decade, while oystercatchers have remained static Knots have shown a slight decline. Knot numbers are independent of national census counts so are presumably determined largely by factors operating on Farewell Spit itself. A possible mechanism that could give to a slowly declining population could be if a certain sector of the population fails to deposit sufficient nutrients to successfully migrate and return. If site-fidelity is very high (as it generally is in waders) then a long-term decrease could ensue.
    Date
    1996
    Author
    Battley, Phil F. (Philip Frank)
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/6583
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1