Nanoprecipitation to produce hydrophobic cellulose nanospheres for water-in-oil Pickering emulsions
Loading...
Date
2024-07
Open Access Location
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature B V
Rights
(c) 2024 The Author/s
CC BY 4.0
CC BY 4.0
Abstract
In recent years, there has been growing interest in replacing petroleum-based water-in-oil (W/O) emulsifiers with sustainable and less toxic natural materials. Pickering emulsifiers are considered well-suited candidates due to their high interfacial activity and the ability to form emulsions with long-term stability. However, only sporadic examples of natural materials have been considered as inverse Pickering emulsifiers. This study describes the synthesis of a series of hydrophobic cellulose nanospheres by bulk modification with acyl groups of different chain lengths followed by nanoprecipitation, and their application as inverse emulsifiers. Modification with acyl groups of longer chain length (C16, C18) afforded lower degrees of substitution, but resulted in greater thermal stability than groups with shorter acyl chains (C12, C14). Formation of nanospheres with low aspect ratios and narrow size distributions required low initial cellulose concentrations (< 1% w/v), high volumetric ratios of antisolvent to solvent (> 10:1), and slow addition rates (< 20 mL/h). The modified cellulose nanospheres were able to reduce the interfacial tension between water and hexane from 45.8 mN/m to 31.1 mN/m, with an effect that increased with the number of carbons in the added acyl chains. The stearate-modified nanospheres exhibited superhydrophobic behavior, showing a contact angle of 156° ± 4° with water, and demonstrated emulsification performance comparable to the commonly used molecular surfactant sorbitan stearate. Our findings suggest that hydrophobically modified cellulose nanospheres have the potential to be a bio-derived alternative to traditional molecular W/O emulsifiers.
Description
Keywords
Spherical cellulose nanoparticles, Inverse Pickering emulsion, Nanoprecipitation, Hydrophobically modifed cellulose, Water-in-oil emulsion
Citation
Tiban Anrango BA, Naiya MM, Van Dongen J, Matich O, Whitby CP, Chen JLY. (2024). Nanoprecipitation to produce hydrophobic cellulose nanospheres for water-in-oil Pickering emulsions. Cellulose. 31. 10. (pp. 6225-6239).