• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An analysis of the effects of field-soil disturbance treatments on arbuscular mycorrhizal fungi : a thesis presented in partial fulfilment of the requirements for the degree of Master of Sciences in Plant Biology, Massey University

    Icon
    View/Open Full Text
    01_front.pdf (2.148Mb)
    02_whole.pdf (45.37Mb)
    Export to EndNote
    Abstract
    In soil and root ecosystems the partitioning of carbon is ubiquitously affected by interactions with heterotrophic rhizosphere micro organisms, including the potentially mutually beneficial (+,+) arbuscular mycorrhizal (AM) fungi. However, the existence and sustainable management of AM fungi is threatened by prolonged and or intensive disturbances of soil. Therefore this study set out to explore the relationships between plants, soil fungi and soil disturbance treatments. A containerised bioassay of maize seedlings was used to assess root inhabitation of arbuscular mycorrhizal fungi from samples of Manawatu silt loam pasture field soils, methods were adapted from Brundrett et al (1996). Development of a rapid method to visualise the AM fungal inhabited maize seedling roots was enhanced by an alternative light source on an Olympus SZIII dissection microscope. A 100W-equivalent fluorescent light tube produced less heat, but provided approximately five-fold more illumination than the original 20W Olympus incandescent light bulb. It was found that propagation of maize seedlings during mid to late winter and greenhouse environments with relatively limited light day-length and irradiance levels may have resulted in 'parasitic' (+,-) soil-fungal interactions, or reduced growth of maize seedling plant biomass. Soil fungal parasitism of plant growth was attributed to mutual competition (-,-) for carbon photosynthate resources shared between soil fungi and plant host symbionts. In addition, a Venn-diagram model is proposed with three entities depicting fungal and plant population interactions that include mutual costs and benefits derived from bidirectional exchange of mineral and carbon nutrients as follows; mutualism and protocooperation (+,+); neutralism (0,0); and competition (-,-). Intersecting sets of these entities depict a three-way continuum of population interactions; parasitism or predation (+,-), and prey or host escape (-,+); amensalism (0,- or -,0); and commensalism (0,+ or +,0).
    Date
    2001
    Author
    Graves, Donald Wayne
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/7152
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1