Effects of three immobilizing drug combinations on ventilation, gas exchange and metabolism in free-living African lions (Panthera leo)
Loading...
Date
2023-08-10
DOI
Open Access Location
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press and the Society for Experimental Biology
Rights
(c) 2023 The Author/s
CC BY 4.0
CC BY 4.0
Abstract
Free-living lions (12 per group) were immobilized with tiletamine-zolazepam-medetomidine (TZM), ketamine-medetomidine (KM), or ketamine-butorphanol-medetomidine (KBM). During immobilization, respiratory, blood gas and acid-base variables were monitored for 30 minutes. Respiratory rates were within expected ranges and remained constant throughout the immobilizations. Ventilation increased in lions over the immobilization period from 27.2 ± 9.5 to 35.1 ± 25.4 L/min (TZM), 26.1 ± 14.3 to 28.4 ± 18.4 L/min (KM) and 23.2 ± 10.8 to 26.7 ± 14.2 L/min (KBM). Tidal volume increased over the immobilization period from 1800 ± 710 to 2380 ± 1930 mL/breath (TZM), 1580 ± 470 to 1640 ± 500 mL/breath (KM) and 1600 ± 730 to 1820 ± 880 mL/breath (KBM). Carbon dioxide production was initially lower in KBM (0.4 ± 0.2 L/min) than in TZM (0.5 ± 0.2 L/min) lions but increased over time in all groups. Oxygen consumption was 0.6 ± 0.2 L/min (TZM), 0.5 ± 0.2 L/min (KM) and 0.5 ± 0.2 L/min (KBM) and remained constant throughout the immobilization period. Initially the partial pressure of arterial oxygen was lower in KBM (74.0 ± 7.8 mmHg) than in TZM (78.5 ± 4.7 mmHg) lions, but increased to within expected range in all groups over time. The partial pressure of arterial carbon dioxide was higher throughout the immobilizations in KBM (34.5 ± 4.2 mmHg) than in TZM (32.6 ± 2.2 mmHg) and KM (32.6 ± 3.8 mmHg) lions. Alveolar-arterial gradients were initially elevated, but decreased over time for all groups, although in KM lions it remained elevated (26.9 ± 10.4 mmHg) above the expected normal. Overall, all three drug combinations caused minor respiratory and metabolic side-effects in the immobilized lions. However, initially hypoxaemia occurred as the drug combinations, and possibly the stress induced by the immobilization procedure, hinder alveoli oxygen gas exchange.
Description
Keywords
A-a gradient, butorphanol, hypoxaemia, ketamine, medetomidine
Citation
Donaldson AC, Buss PE, Fuller A, Meyer LCR. (2023). Effects of three immobilizing drug combinations on ventilation, gas exchange and metabolism in free-living African lions (Panthera leo). Conservation Physiology. 11. 1.
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as (c) 2023 The Author/s

