Synthesized cooperative strategies for intelligent multi-robots in a real-time distributed environment : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Science at Massey University, Albany, New Zealand
Loading...
Date
2009
DOI
Open Access Location
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Massey University
Rights
The Author
Abstract
In the robot soccer domain, real-time response usually curtails the development of more complex Al-based game strategies, path-planning and team cooperation between intelligent agents. In light of this problem, distributing computationally intensive algorithms between several machines to control, coordinate and dynamically assign roles to a team of robots, and allowing them to communicate via a network gives rise to real-time cooperation in a multi-robotic team. This research presents a myriad of algorithms tested on a distributed system platform that allows for cooperating multi- agents in a dynamic environment. The test bed is an extension of a popular robot simulation system in the public domain developed at Carnegie Mellon University, known as TeamBots. A low-level real-time network game protocol using TCP/IP and UDP were incorporated to allow for a conglomeration of multi-agent to communicate and work cohesively as a team. Intelligent agents were defined to take on roles such as game coach agent, vision agent, and soccer player agents. Further, team cooperation is demonstrated by integrating a real-time fuzzy logic-based ball-passing algorithm and a fuzzy logic algorithm for path planning. Keywords Artificial Intelligence, Ball Passing, the coaching system, Collaborative, Distributed Multi-Agent, Fuzzy Logic, Role Assignment
Description
Keywords
Intelligent agents (Computer software), Artificial intelligence, Autonomous robots, Fuzzy logic, Soccer -- Computer simulation