Modelling community productivity, species abundance and richness in a naturalised pasture ecosystem : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University, Palmerston North, New Zealand

dc.contributor.authorZhang, Baisen
dc.date.accessioned2010-08-31T04:42:47Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-08-31T04:42:47Z
dc.date.issued2005
dc.description.abstractThis study focuses on modelling community productivity, species abundance and richness, and the impact of climate change and alternative phosphorous fertiliser application strategies on pasture productivity by integration of decision tree and regression modelling approaches with a geographical information system (GIS) in a naturalised hill-pasture ecosystem in the North Island, New Zealand, using data derived from research conducted on hill-pastures over the last several decades. The results indicated that the decision tree models had a high predictive capability and clearly revealed the relative importance of environmental and management factors in influencing community productivity, species abundance and richness. Spring rainfall was the most significant factor influencing annual pasture productivity in the North Island, while hill slope was the most significant factor influencing spring and winter pasture productivity. Annual P fertiliser input and autumn rainfall were the most significant factors influencing summer and autumn pasture productivity, respectively. For species functional group abundance, soil Olsen P was the most significant factor influencing the relative abundance of low fertility tolerance grasses (LFTG) and moss, while soil bulk density, slope and annual P fertiliser input were the most significant factors influencing the relative abundance of legume, high fertility response grasses (HFRG) and flatweeds, respectively. Legume abundance was the most significant factor influencing species richness in the hill-pasture. Species richness increased with an increase in legume abundance and showed a tendency for a hump-shaped response. Grazing animal species also had a significant effect on species richness; pasture grazed by sheep had more species than pasture grazed by cattle. Climate change scenarios of temperature increases of 1-2 °C and rainfall changes of -20% to +20% would have a great impact (-46.2% to +51.9%) on pasture production in the North Island. Pasture in areas with relatively low rainfall had a higher response to increased P fertiliser input than pastures in areas with a relatively high rainfall. In conclusion, the integration of a GIS with decision tree and regression models in this study provided an approach for effective predictive modelling of community productivity, species abundance and richness in the hill-pasture. This modelling approach can also be used as a tool in pasture management such as in assessing the impact of climate change and alternative fertiliser management on pasture production.en_US
dc.identifier.urihttp://hdl.handle.net/10179/1610
dc.language.isoenen_US
dc.publisherMassey Universityen_US
dc.rightsThe Authoren_US
dc.subjectPasture productivityen_US
dc.subjectPasture fertilisationen_US
dc.subjectClimate change effectsen_US
dc.subject.otherFields of Research::300000 Agricultural, Veterinary and Environmental Sciences::300200 Crop and Pasture Productionen_US
dc.titleModelling community productivity, species abundance and richness in a naturalised pasture ecosystem : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University, Palmerston North, New Zealanden_US
dc.typeThesisen_US
massey.contributor.authorZhang, Baisen
thesis.degree.disciplinePlant Scienceen_US
thesis.degree.grantorMassey Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophy (Ph.D.)en_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
02_whole.pdf
Size:
4.7 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
01_front.pdf
Size:
760.54 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
895 B
Format:
Item-specific license agreed upon to submission
Description: