Characterisation of the interactions of RGL1 : a negative regulator of gibberellin signalling : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry, Massey University, Palmerston North, New Zealand.

dc.contributor.authorSheerin, David John
dc.date.accessioned2011-01-12T20:41:13Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2011-01-12T20:41:13Z
dc.date.issued2010
dc.description.abstractThe gibberellins are a family of phytohormones that promote many aspects of plant development. Central to the function of gibberellins are the DELLA regulatory proteins. The DELLA proteins actively repress cell differentiation and elongation, but are degraded upon perception of gibberellin, thus relieving repression of gibberellin responses. The GID1-family gibberellin receptors and DELLA-specific F-box proteins are essential for the gibberellin-induced degradation of the DELLA proteins. Importantly, the direct interaction between gibberellin-bound GID1-family gibberellin receptors and the N-terminal domain of DELLA proteins is a prerequisite for proteasomal degradation through recruitment of the F-box proteins. To increase understanding of gibberellin signalling, I have characterised a gibberellin-dependent GID1-DELLA-F-box protein signalling switch in Arabidopsis thaliana. First, I have characterised a suite of anti-DELLA antibodies for detection of four endogenous A. thaliana DELLA proteins, GIBBERELLIC ACID-INSENSITIVE (GAI), REPRESSOR OF GA1-3 (RGA), RGA-LIKE-1 (RGL1), and RGA-LIKE-2 (RGL2). Using these monoclonal antibodies against the conserved motifs of DELLA proteins, I showed that residues Asp/Glu/Leu/Leu within the signature DELLA motif are not essential for interaction of RGL1 with GID1A. Further, in vitro interaction assays allowed modelling a two-step conformational change within the N-terminal domain of RGL1 upon interaction with gibberellin-bound GID1A. Together with interaction assays in yeast two- and three-hybrid systems, these experiments provided three clues to the mechanism of GID1A-RGL1-SLY1 gibberellin signalling switch: i) N- to C- interdomain interactions of RGL1 regulate its accessibility to SLY1; ii) the N-terminal domain of RGL1 undergoes conformational rearrangement upon interaction with gibberellin-GID1A; iii) the conformational changes of the N-terminal domain of RGL1 primes the C-terminal domain for the recruitment of SLY1. I have also isolated two novel RGL1-interacting proteins, the myrosinase THIOGLUCOSIDE GLUCOHYDROLASE-2 (TGG2) and GERMIN-LIKE-PROTEIN-1 (GLP1), through affinity-purification from nuclear extract and mass spectrometry fingerprinting. Neither protein has yet been implicated in gibberellin signalling. Therefore, the identification of these novel components may help resolve several uncharacterised aspects of gibberellin signalling.en_US
dc.identifier.urihttp://hdl.handle.net/10179/2056
dc.language.isoenen_US
dc.publisherMassey Universityen_US
dc.rightsThe Authoren_US
dc.subjectGibberellin signallingen_US
dc.subjectRGL1-interacting proteinsen_US
dc.subjectDELLA proteinsen_US
dc.subject.otherFields of Research::270000 Biological Sciences::270100 Biochemistry and Cell Biologyen_US
dc.titleCharacterisation of the interactions of RGL1 : a negative regulator of gibberellin signalling : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry, Massey University, Palmerston North, New Zealand.en_US
dc.typeThesisen_US
massey.contributor.authorSheerin, David John
thesis.degree.disciplineBiochemistryen_US
thesis.degree.grantorMassey Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophy (Ph.D.)en_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
02_whole.pdf
Size:
17.24 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
01_front.pdf
Size:
183.04 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
896 B
Format:
Item-specific license agreed upon to submission
Description: