Leaf Rubisco turnover variation in a perennial ryegrass (Lolium perenne L.) population : analysis of quantitative trait loci, implications for productivity, and potential for manipulation : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science, Massey University, Institute of Natural Resources, College of Sciences, Palmerston North, New Zealand

dc.contributor.authorKhaembah, Edith Nanjala
dc.date.accessioned2010-09-26T21:17:24Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-09-26T21:17:24Z
dc.date.issued2009
dc.description.abstractThe Grasslands II perennial ryegrass (Lolium perenne L.) mapping population comprising F1 progeny with the two parents (one plant each from the cultivars Samson and Impact) (Crush et al., 2007) was used to detect putative quantitative trait loci (QTL) for leaf Rubisco turnover and herbage yield traits. Rubisco turnover was described by three mathematical parameters: d (maximum Rubisco content), g (time of d) and f (a measure of curve width). All three parameters exhibited continuous variation among the F1 progeny. Sixteen QTL were detected, seven for Rubisco turnover and nine for herbage yield traits. Support interval overlap on linkage group (LG) 1 and close location on LG2 for plant dry weight (DW) QTL in this study and in a previous analysis (Sartie, 2007) of the same mapping population suggests DW QTL stability across environments. Some QTL identified by Sartie (2007) were not re-confirmed in this study, but new QTL were identified. This suggests genotype x environment interaction generated by variable expression of genes in different environments. Clusters of QTL with overlapping support intervals were found on LG2 and LG5. The cluster on LG2 included QTL for herbage yield traits leaf lamina length (LL), tiller number (TN), productivity index (PI) and DW. The cluster on LG5 included QTL for DW, PI, TN, and d. These two regions offer potential for plant breeding applications. Apart from the QTL for d on LG5, there was no co-location of Rubisco turnover and herbage yield QTL. However, principal component analysis indicated plants with lower d tended to have higher DW; thus Rubisco turnover effects on plant productivity may relate to energy cost of Rubisco synthesis rather than photosynthetic capacity. DW was generally unrelated to f and g; therefore, hypothesised nitrogen use inefficiencies arising from premature Rubisco degradation, or retention of Rubisco at leaf senescence, were not confirmed. LG5 and LG7 on which QTL for d were located have conserved syntenic regions with rice chromosomes 8 and 9 where QTL for Rubisco content at different stages during heading were mapped by Ishimaru et al (2001a).en_US
dc.identifier.urihttp://hdl.handle.net/10179/1690
dc.language.isoenen_US
dc.publisherMassey Universityen_US
dc.rightsThe Authoren_US
dc.subjectLolium perenneen_US
dc.subjectRubisco turnoveren_US
dc.subjectPlant productivityen_US
dc.subjectPerennial ryegrass
dc.subject.otherFields of Research::270000 Biological Sciences::270400 Botany::270402 Plant physiologyen_US
dc.titleLeaf Rubisco turnover variation in a perennial ryegrass (Lolium perenne L.) population : analysis of quantitative trait loci, implications for productivity, and potential for manipulation : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science, Massey University, Institute of Natural Resources, College of Sciences, Palmerston North, New Zealanden_US
dc.typeThesisen_US
massey.contributor.authorKhaembah, Edith Nanjala
thesis.degree.disciplinePlant Scienceen_US
thesis.degree.grantorMassey Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophy (Ph.D.)en_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
02_whole.pdf
Size:
2.06 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
01_front.pdf
Size:
206.55 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
896 B
Format:
Item-specific license agreed upon to submission
Description: