Symmetric parallel class expression learning : School of Engineering and Advanced Technology, Massey University, New Zealand : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science

Thumbnail Image
Open Access Location
Journal Title
Journal ISSN
Volume Title
Massey University
The Author
The growth of both size and complexity of learning problems in description logic applications, such as the Semantic Web, requires fast and scalable description logic learning algorithms. This thesis proposes such algorithms using several related ap- proaches and compares them with existing algorithms. Particular measures used for comparison include computation time and accuracy on a range of learning problems of di erent sizes and complexities. The rst step is to use parallelisation inspired by the map-reduce framework. The top-down learning approach, coupled with an implicit divide-and-conquer strategy, also facilitates the discovery of solutions for a certain class of complex learning problems. A reduction step aggregates the partial solutions and also provides additional exibility to customise learnt results. A symmetric class expression learning algorithm produces separate de nitions of positive (true) examples and negative (false) examples (which can be computed in parallel). By treating these two sets of de nitions `symmetrically', it is sometimes possible to reduce the size of the search space signi cantly. The use of negative example denotions enhances learning problems with exceptions, where the negative examples (`exceptions') follow a few relatively simple patterns. In general, correctness (true positives) and completeness (true negatives) of a learn- ing algorithm are traded o against each other because these two criteria are normally con icting. Particular learning algorithms have an inherent bias towards either cor- rectness or completeness. The use of negative de nitions enables an approach (called forti cation in this thesis) to improve predictive correctness by applying an appropriate level of over-specialisation to the prediction model, while avoiding over- tting. The experiments presented in the thesis show that these algorithms have the po- tential to improve both the computation time and predictive accuracy of description logic learning when compared to existing algorithms.
Computer algorithms, Machine learning, Computer learning problems