Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item Device-Free Localization Using Privacy-Preserving Infrared Signatures Acquired from Thermopiles and Machine Learning(IEEE, 4/06/2021) Faulkner N; Alam F; Legg M; Demidenko SThe development of an accurate passive localization system utilizing thermopile sensing and artificial intelligence is discussed in this paper. Several machine learning techniques are explored to create robust angular and radius coordinate models for a localization target with respect to thermopile sensors. These models are leveraged to develop a reconfigurable passive localization system that can use a varying number of thermopiles without the need for retraining. The proposed robust system achieves high localization accuracy (with the median error between 0.13 m and 0.2 m) while being trained using a single human subject and tested against multiple other subjects. It is shown that the proposed system does not experience any significant performance deterioration when localizing a subject at different ambient temperatures or with different configurations of the thermopile sensors placement.Item A Machine Learning Approach to Enhance the Performance of D2D-Enabled Clustered Networks(IEEE, 20/01/2021) Aslam S; Alam F; Hasan SF; Rashid MAClustering has been suggested as an effective technique to enhance the performance of multicasting networks. Typically, a cluster head is selected to broadcast the cached content to its cluster members utilizing Device-to-Device (D2D) communication. However, some users can attain better performance by being connected with the Evolved Node B (eNB) rather than being in the clusters. In this article, we apply machine learning algorithms, namely Support Vector Machine, Random Forest, and Deep Neural Network to identify the users that should be serviced by the eNB. We therefore propose a mixed-mode content distribution scheme where the cluster heads and eNB service the two segregated groups of users to improve the performance of existing clustering schemes. A D2D-enabled multicasting scenario has been set up to perform a comprehensive simulation study that demonstrates that by utilizing the mixed-mode scheme, the performance of individual users, as well as the whole network, improve significantly in terms of throughput, energy consumption, and fairness. This study also demonstrates the trade-off between eNB loading and performance improvement for various parameters.Item SpringLoc: A device-free localization technique for indoor positioning and tracking using adaptive RSSI spring relaxation(Institute of Electrical and Electronics Engineers (IEEE), 5/05/2019) Konings D; Alam F; Noble F; Lai EDevice-free localization (DFL) algorithms using the received signal strength indicator (RSSI) metrics have become a popular research focus in recent years as they allow for location-based service using commercial-off-the-shelf (COTS) wireless equipment. However, most existing DFL approaches have limited applicability in realistic smart home environments as they typically require extensive offline calibration, large node densities, or use technology that is not readily available in commercial smart homes. In this paper, we introduce SpringLoc and a DFL algorithm that relies on simple parameter tuning and does not require offline measurements. It localizes and tracks an entity using an adaptive spring relaxation approach. The anchor points of the artificial springs are placed in regions containing the links that are affected by the entity. The affected links are determined by comparing the kernel-based histogram distance of successive RSSI values. SpringLoc is benchmarked against existing algorithms in two diverse and realistic environments, showing significant improvement over the state-of-the-art, especially in situations with low-node deployment density.Item CapLoc: Capacitive Sensing Floor for Device-Free Localization and Fall Detection(IEEE Xplore, 12/10/2020) Faulkner N; Parr B; Alam F; Legg M; Demidenko SPassive indoor positioning, also known as Device-Free Localization (DFL), has applications such as occupancy sensing, human-computer interaction, fall detection, and many other location-based services in smart buildings. Vision-, infrared-, wireless-based DFL solutions have been widely explored in recent years. They are characterized by respective strengths and weaknesses in terms of the desired accuracy, feasibility in various real-world scenarios, etc. Passive positioning by tracking the footsteps on the floor has been put forward as one of the promising options. This article introduces CapLoc, a floor-based DFL solution that can localize a subject in real-time using capacitive sensing. Experimental results with three individuals walking 39 paths on the CapLoc show that it can detect and localize a single target's footsteps accurately with a median localization error of 0.026 m. The potential for fall detection is also shown with the outlines of various poses of the subject lying upon the floor.

