Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
3 results
Search Results
Item Extended-spectrum β-lactamase- and AmpC β-lactamase-producing Enterobacterales associated with urinary tract infections in the New Zealand community: a case-control study(Elsevier Ltd on behalf of International Society for Infectious Diseases, 2023-03) Toombs-Ruane LJ; Marshall JC; Benschop J; Drinković D; Midwinter AC; Biggs PJ; Grange Z; Baker MG; Douwes J; Roberts MG; French NP; Burgess SAOBJECTIVES: To assess whether having a pet in the home is a risk factor for community-acquired urinary tract infections associated with extended-spectrum β-lactamase (ESBL)- or AmpC β-lactamase (ACBL)- producing Enterobacterales. METHODS: An unmatched case-control study was conducted between August 2015 and September 2017. Cases (n = 141) were people with community-acquired urinary tract infection (UTI) caused by ESBL- or ACBL-producing Enterobacterales. Controls (n = 525) were recruited from the community. A telephone questionnaire on pet ownership and other factors was administered, and associations were assessed using logistic regression. RESULTS: Pet ownership was not associated with ESBL- or ACBL-producing Enterobacterales-related human UTIs. A positive association was observed for recent antimicrobial treatment, travel to Asia in the previous year, and a doctor's visit in the last 6 months. Among isolates with an ESBL-/ACBL-producing phenotype, 126/134 (94%) were Escherichia coli, with sequence type 131 being the most common (47/126). CONCLUSIONS: Companion animals in the home were not found to be associated with ESBL- or ACBL-producing Enterobacterales-related community-acquired UTIs in New Zealand. Risk factors included overseas travel, recent antibiotic use, and doctor visits.Item Genomic Analysis of Salmonella enterica Serovar Typhimurium DT160 Associated with a 14-Year Outbreak, New Zealand, 1998-2012.(2017-06) Bloomfield SJ; Benschop J; Biggs PJ; Marshall JC; Hayman DTS; Carter PE; Midwinter AC; Mather AE; French NPDuring 1998-2012, an extended outbreak of Salmonella enterica serovar Typhimurium definitive type 160 (DT160) affected >3,000 humans and killed wild birds in New Zealand. However, the relationship between DT160 within these 2 host groups and the origin of the outbreak are unknown. Whole-genome sequencing was used to compare 109 Salmonella Typhimurium DT160 isolates from sources throughout New Zealand. We provide evidence that DT160 was introduced into New Zealand around 1997 and rapidly propagated throughout the country, becoming more genetically diverse over time. The genetic heterogeneity was evenly distributed across multiple predicted functional protein groups, and we found no evidence of host group differentiation between isolates collected from human, poultry, bovid, and wild bird sources, indicating ongoing transmission between these host groups. Our findings demonstrate how a comparative genomic approach can be used to gain insight into outbreaks, disease transmission, and the evolution of a multihost pathogen after a probable point-source introduction.Item Diverse Epidemiology of Leptospira serovars Notified in New Zealand, 1999-2017(MDPI (Basel, Switzerland), 14/10/2020) Nisa S; Wilkinson DA; Angelin-Bonnet O; Paine S; Cullen K; Wight J; Baker MG; Benschop JLeptospirosis in New Zealand has been strongly associated with animal-contact occupations and with serovars Hardjo and Pomona. However, recent data suggest changes in these patterns, hence, serovar-specific epidemiology of leptospirosis from 1999 to 2017 was investigated. The 19-year average annual incidence is 2.01/100,000. Early (1999-2007) and late (2008-2017) study period comparisons showed a significant increase in notifications with serovar Ballum (IRR: 1.59, 95% CI: 1.22-2.09) in all cases and serovar Tarassovi (IRR: 1.75, 95% CI: 1.13-2.78) in Europeans and a decrease in notifications with serovars Hardjo and Pomona in all cases. Incidences of Ballum peaked in winter, Hardjo peaked in spring and Tarassovi peaked in summer. Incidence was highest in Māori (2.24/100,000) with dominant serovars being Hardjo and Pomona. Stratification by occupation showed meat workers had the highest incidence of Hardjo (57.29/100,000) and Pomona (45.32/100,000), farmers had the highest incidence of Ballum (11.09/100,000) and dairy farmers had the highest incidence of Tarassovi (12.59/100,000). Spatial analysis showed predominance of Hardjo and Pomona in Hawke's Bay, Ballum in West Coast and Northland and Tarassovi in Waikato, Taranaki and Northland. This study highlights the serovar-specific heterogeneity of human leptospirosis in New Zealand that should be considered when developing control and prevention strategies.

