Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Device-Free Localization Using Privacy-Preserving Infrared Signatures Acquired from Thermopiles and Machine Learning
    (IEEE, 4/06/2021) Faulkner N; Alam F; Legg M; Demidenko S
    The development of an accurate passive localization system utilizing thermopile sensing and artificial intelligence is discussed in this paper. Several machine learning techniques are explored to create robust angular and radius coordinate models for a localization target with respect to thermopile sensors. These models are leveraged to develop a reconfigurable passive localization system that can use a varying number of thermopiles without the need for retraining. The proposed robust system achieves high localization accuracy (with the median error between 0.13 m and 0.2 m) while being trained using a single human subject and tested against multiple other subjects. It is shown that the proposed system does not experience any significant performance deterioration when localizing a subject at different ambient temperatures or with different configurations of the thermopile sensors placement.
  • Item
    CapLoc: Capacitive Sensing Floor for Device-Free Localization and Fall Detection
    (IEEE Xplore, 12/10/2020) Faulkner N; Parr B; Alam F; Legg M; Demidenko S
    Passive indoor positioning, also known as Device-Free Localization (DFL), has applications such as occupancy sensing, human-computer interaction, fall detection, and many other location-based services in smart buildings. Vision-, infrared-, wireless-based DFL solutions have been widely explored in recent years. They are characterized by respective strengths and weaknesses in terms of the desired accuracy, feasibility in various real-world scenarios, etc. Passive positioning by tracking the footsteps on the floor has been put forward as one of the promising options. This article introduces CapLoc, a floor-based DFL solution that can localize a subject in real-time using capacitive sensing. Experimental results with three individuals walking 39 paths on the CapLoc show that it can detect and localize a single target's footsteps accurately with a median localization error of 0.026 m. The potential for fall detection is also shown with the outlines of various poses of the subject lying upon the floor.
  • Item
    IoT Big Data provenance scheme using blockchain on Hadoop ecosystem
    (BioMed Central Ltd, 2021-12) Honar Pajooh H; Rashid MA; Alam F; Demidenko S
    The diversity and sheer increase in the number of connected Internet of Things (IoT) devices have brought significant concerns associated with storing and protecting a large volume of IoT data. Storage volume requirements and computational costs are continuously rising in the conventional cloud-centric IoT structures. Besides, dependencies of the centralized server solution impose significant trust issues and make it vulnerable to security risks. In this paper, a layer-based distributed data storage design and implementation of a blockchain-enabled large-scale IoT system are proposed. It has been developed to mitigate the above-mentioned challenges by using the Hyperledger Fabric (HLF) platform for distributed ledger solutions. The need for a centralized server and a third-party auditor was eliminated by leveraging HLF peers performing transaction verifications and records audits in a big data system with the help of blockchain technology. The HLF blockchain facilitates storing the lightweight verification tags on the blockchain ledger. In contrast, the actual metadata are stored in the off-chain big data system to reduce the communication overheads and enhance data integrity. Additionally, a prototype has been implemented on embedded hardware showing the feasibility of deploying the proposed solution in IoT edge computing and big data ecosystems. Finally, experiments have been conducted to evaluate the performance of the proposed scheme in terms of its throughput, latency, communication, and computation costs. The obtained results have indicated the feasibility of the proposed solution to retrieve and store the provenance of large-scale IoT data within the Big Data ecosystem using the HLF blockchain. The experimental results show the throughput of about 600 transactions, 500 ms average response time, about 2–3% of the CPU consumption at the peer process and approximately 10–20% at the client node. The minimum latency remained below 1 s however, there is an increase in the maximum latency when the sending rate reached around 200 transactions per second (TPS).