Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
3 results
Search Results
Item Ectoparasite and bacterial population genetics and community structure indicate extent of bat movement across an island chain.(Cambridge University Press, 2024-05-24) McKee CD; Peel AJ; Hayman DTS; Suu-Ire R; Ntiamoa-Baidu Y; Cunningham AA; Wood JLN; Webb CT; Kosoy MYFew studies have examined the genetic population structure of vector-borne microparasites in wildlife, making it unclear how much these systems can reveal about the movement of their associated hosts. This study examined the complex host-vector-microbe interactions in a system of bats, wingless ectoparasitic bat flies (Nycteribiidae), vector-borne microparasitic bacteria (Bartonella), and bacterial endosymbionts of flies (Enterobacterales) across an island chain in the Gulf of Guinea, West Africa. Limited population structure was found in bat flies and Enterobacterales symbionts compared to that of their hosts. Significant isolation by distance was observed in the dissimilarity of Bartonella communities detected in flies from sampled populations of Eidolon helvum bats. These patterns indicate that, while genetic dispersal of bats between islands is limited, some nonreproductive movements may lead to the dispersal of ectoparasites and associated microbes. This study deepens our knowledge of the phylogeography of African fruit bats, their ectoparasites, and associated bacteria. The results presented could inform models of pathogen transmission in these bat populations and increase our theoretical understanding of community ecology in host-microbe systems.Item Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health(The Royal Society, 2022-05-25) Muylaert RL; Kingston T; Luo J; Vancine MH; Galli N; Carlson CJ; John RS; Rulli MC; Hayman DTSGlobal changes in response to human encroachment into natural habitats and carbon emissions are driving the biodiversity extinction crisis and increasing disease emergence risk. Host distributions are one critical component to identify areas at risk of viral spillover, and bats act as reservoirs of diverse viruses. We developed a reproducible ecological niche modelling pipeline for bat hosts of SARS-like viruses (subgenus Sarbecovirus), given that several closely related viruses have been discovered and sarbecovirus-host interactions have gained attention since SARS-CoV-2 emergence. We assessed sampling biases and modelled current distributions of bats based on climate and landscape relationships and project future scenarios for host hotspots. The most important predictors of species distributions were temperature seasonality and cave availability. We identified concentrated host hotspots in Myanmar and projected range contractions for most species by 2100. Our projections indicate hotspots will shift east in Southeast Asia in locations greater than 2°C hotter in a fossil-fuelled development future. Hotspot shifts have implications for conservation and public health, as loss of population connectivity can lead to local extinctions, and remaining hotspots may concentrate near human populations.Item Filoviruses in bats: current knowledge and future directions.(MDPI AG, 17/04/2014) Olival KJ; Hayman DTSFiloviruses, including Ebolavirus and Marburgvirus, pose significant threats to public health and species conservation by causing hemorrhagic fever outbreaks with high mortality rates. Since the first outbreak in 1967, their origins, natural history, and ecology remained elusive until recent studies linked them through molecular, serological, and virological studies to bats. We review the ecology, epidemiology, and natural history of these systems, drawing on examples from other bat-borne zoonoses, and highlight key areas for future research. We compare and contrast results from ecological and virological studies of bats and filoviruses with those of other systems. We also highlight how advanced methods, such as more recent serological assays, can be interlinked with flexible statistical methods and experimental studies to inform the field studies necessary to understand filovirus persistence in wildlife populations and cross-species transmission leading to outbreaks. We highlight the need for a more unified, global surveillance strategy for filoviruses in wildlife, and advocate for more integrated, multi-disciplinary approaches to understand dynamics in bat populations to ultimately mitigate or prevent potentially devastating disease outbreaks.
