Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
31 results
Search Results
Item Enhancing Biological Nitrogen Fixation Through Diverse Pasture Swards(MDPI (Basel, Switzerland), 2025-09) Sutharsan R; Jeyakumar P; Burkitt L; Matse DT; Dhanuskodi R; Hanly J; Donaghy DJ; Cai HRegenerative agricultural practices emphasize the use of diverse pasture species within sustainable agriculture production systems. The inclusion of a range of legume species in diverse pasture swards is likely to increase biological N fixation (BNF) across seasons, reducing the system’s reliance on synthetic N inputs. The present field study aims to quantify BNF in selected legume species within diverse pasture (combining 9 species) and standard pastures (ryegrass and clover combination) and assess their performance to identify the potential for improving N supply while maintaining year-round pasture quality. A year-round seasonal BNF was assessed by evaluating soil N status, nodulation patterns, plant composition, and conducting 15N natural abundance studies. The results revealed that the diverse pasture sward produced 5.4% more dry matter compared to the standard pasture, while soil mineral N (NO3−, NH4+) remained statistically similar between the two treatments. Nitrogen yield was 9.3% higher in the diverse pasture than in the standard pasture. 15N natural abundance analysis assessment revealed no substantial variation in BNF rates across treatments throughout the study. However, in contrast to standard pasture, the BNF rate in diverse pasture experienced a 3-fold increase from winter to summer, while the standard pasture exhibited a 1.5-fold increase. In both pasture systems, BNF increased with clover proportion up to 30%, indicating optimal fixation at moderate clover levels. The findings underscore the potential of diverse pastures when strategically managed to enhance seasonal BNF while sustaining pasture productivity.Item Soil nutrient enrichment in pastoral systems through shelterbelts(Elsevier Ltd, 2025-10-01) Fonseka D; Jha N; Jeyakumar PShelterbelts along pasture boundaries are a natural, cost-effective, and sustainable solution to environmental challenges such as soil degradation and nutrient losses in New Zealand's pastoral systems. However, there's limited information on how shelterbelts affect nutrient dynamics in neighbouring pasture soils. Three field study sites, two dairy farms and one beef and sheep farm, consisting of the same soil type, were selected. Shelterbelts on the sites were composed of Pinus or Macrocarpa, or a mix of Macrocarpa and Willow. Soil samples were collected from each site, both with and without shelterbelts, at three transects for six distances (1 m, 5 m, 10 m, 20 m, 40 m, 80 m) and two soil depths (0–7.5 cm and 7.5–15 cm) in late spring 2023. Shelterbelts on all four farms significantly affected soil nutrient distribution in the adjacent area. Soils within 10 m of shelterbelts had higher total and Olsen phosphorus levels by up to 65 % and 80 %, respectively; the total and nitrate nitrogen levels increased by up to 64 % relative to control (no shelterbelt) soils. Shelterbelts increased soil organic carbon by up to 75 %. The macrocarpa and willow combined shelterbelt deposited around 17 Mg more C in the area tested compared to the control. These findings indicate that the shelterbelt with grazed pastures enhances phosphorus and nitrogen availability within the immediate vicinity. The inclusion of diverse species can contribute to the accumulation of topsoil carbon. Future research should focus on comparing more diverse tree species and improved grazing practices within shelterbelts to enhance the sustainability of the grazing farming system.Item Assessing Controlled Traffic Farming as a Precision Agriculture Strategy for Minimising N2O Losses(MDPI AG, 2025-08-04) Raveendrakumaran B; Grafton M; Jeyakumar P; Bishop P; Davies C; Li DItem Phosphorus Release and Transformations in Contrasting Tropical Paddy Soils Under Fertiliser Application(Springer Nature on behalf of the Sociedad Chilena de la Ciencia del Suelo, 2025-04-11) Palihakkara J; Attanayake CP; Burkitt L; Jeyakumar PPurpose: Inconsistent yield responses to inorganic phosphorus (P) fertilisers in tropical rice paddy soils remain a challenge. This study investigated the contributions of applied P fertilisers to soluble soil P and P transformation mechanisms in P-added paddy soils. Methods: An incubation study was conducted on three rice-growing soils (Ultisol, Alfisol, and Entisol) in Sri Lanka with and without single superphosphate (SSP), triple superphosphate (TSP), and urea. Dissolved reactive phosphorus (DRP) was measured over 112 days of submergence. Thermodynamic modelling and chemical P fractionation were employed to assess soil P transformations. Results: Phosphorus-fertilised soils had significantly higher DRP concentrations (1.1–8.0 mg L−1) compared to controls at 7 days after submergence but DRP declined beyond 21 days (0.024–0.300 mg L−1). Single superphosphate increased DRP more than TSP, short-term. Urea did not affect DRP concentration. Ultisols exhibited the lowest DRP, while Alfisols maintained higher DRP than Ultisol which was near or above the critical concentration for rice (0.1 mg L⁻1) after 28 days. In Entisol, only SSP maintained DRP above 0.1 mg L−1. Modelling suggested Ca phosphates and Fe oxy(hydr)oxides dissolved during submergence. Released P may be resorbed by Fe/Al oxy(hydr)oxides and Ca minerals, with evidence of downward movement of dissolved P and its resorption onto Fe/Al and Ca minerals possibly due to saturation of P sorption sites in the topsoil layer. Conclusion: Low dissolved P in porewater may be linked to inherent soil characteristics, including low organic matter and high amorphous Fe and Al oxides.Item Phosphorus release under short-term submergence of pasture soils in critical source areas.(Elsevier, 2025-01-29) Palihakkara J; Burkitt L; Jeyakumar P; Attanayake CPCritical source areas (CSAs) can act as a source of phosphorus (P) in surface waters by releasing soil P to porewater during frequent rainfall events. The extent of P release under short-term, frequent submergence has not been systematically studied in CSAs in New Zealand. A study was conducted to explore the potential of three contrasting dairy and sheep/beef farm soils (Recent, Pallic and Allophanic soils) to release P to porewater and pondwater under short-term and frequent submergence. Five undisturbed soil blocks (20 × 20 × 15 cm) were sampled from each soil. Porewater samplers and half-cell platinum electrodes for in-situ redox potential measurements were installed at 2 and 10 cm depths from the soil surface. Six submerged events were created by maintaining a 5 cm waterhead. Porewater and pondwater samples were collected immediately and three days after each submergence event. After three days of submergence, the soil blocks were drained and maintained at 70% of water holding capacity for 10 days before the next submergence event. Dissolved reactive phosphorus (DRP), pH, dissolved organic carbon, cations, anions, and alkalinity of the water samples were measured. Soil chemical P fractions were assessed in initial soils and soils in the middle and end of the experiment. Thermodynamic modelling was used to infer dissolution and formation of P and P-associated minerals. The Recent soil released P to porewater at both depths and to pondwater. The Pallic soil released P to porewater at both depths but did not change pondwater DRP. Allophanic soil sorbed P and did not increase DRP either in porewater or pondwater. The average pondwater DRP of the three soils during submergence were 17 to 65-fold higher than the New Zealand lowland river target DRP concentration (0.01 mg/L). The mechanisms of P release from the Recent and Pallic soils were desorption and reductive dissolution of Mn(Ⅱ) minerals. Reductive dissolution of Fe(Ⅱ) minerals was not supported by fractionation or modelling results. Decreases in labile, moderately labile and stable P fractions contributed to P release in the Recent soil, while increases in the labile and moderately labile P fractions contributed to P retention in the Pallic and Allophanic soils. This study highlighted that the Recent soil is riskier than the other two soils in releasing P upon short-term submergence and the potential use of Allophanic soil as a P sorbing material in CSAs to mitigate P loss.Item Redox-induced phosphorus release from critical source areas following rainfall events in New Zealand(Elsevier Ltd, United Kingdom, 2025-02) Palihakkara J; Burkitt L; Jeyakumar P; Attanayake CPCritical source areas (CSAs) can act as a source of phosphorus (P) during intermittent rainfall events and contribute to dissolved P loss via runoff. Dissolved forms of P are readily accessible for plant and algal uptake; hence it is a concern in terms of the eutrophication of freshwater bodies. The potential of CSAs to release dissolved P to surface runoff upon intermittent short-term submergence caused by different rainfall events has not been studied at a field-scale in New Zealand previously. A field study was conducted to investigate the potential of two different pastoral soil CSAs (Recent and Pallic soil) to release soil P over five rainfall events during winter and to explore the mechanisms of P release in these soils. Ten sampling stations were installed within each CSA in an area of 6 × 2 m2. Each sampling station had two porewater samplers installed at two depths (2 and 10 cm) below the soil surface. Two platinum half-cell electrodes were installed at the same two depths. Porewater and floodwater samples were collected following five rainfall events. Redox potentials were measured in-situ. Dissolved reactive phosphorus (DRP), pH, dissolved organic carbon, cations, anions, and alkalinity of the water samples were measured. Soil chemical P fractions were assessed at the beginning, middle and end of the experiment. Thermodynamic modelling was used to infer dissolution and formation of P and P-associated minerals. The average porewater DRP at the two depths during the rainfall events of the Recent and Pallic soils were 0.32-1.3 mg L-1 and 0.26-2.31 mg L-1, respectively. The average floodwater DRP concentrations of the Recent and Pallic soils were 35 and 43-fold higher than the target DRP concentration (0.01 mg L-1) for the Manawatū River. The study highlights the substantial risk of P loss from CSAs to surface water, driven primarily by the reductive dissolution of Fe and Mn oxy(hydr)oxides. The findings underscore the importance of targeted management strategies to mitigate dissolved P runoff, particularly in high-risk CSAs frequent submerged during rainfall events. This study developed an effective method for monitoring soil porewater P and redox conditions, offering valuable insights and practical tools for resource managers seeking to reduce P contamination.Item The association between fluoride concentrations and spontaneous humeral fracture in first-lactation dairy cows: results from two New Zealand studies(Taylor and Francis Group, 2024-11-17) Wehrle-Martinez A; Dittmer KE; Back PJ; Rogers CW; Weston JF; Jeyakumar P; Pereira RV; Poppenga R; Taylor HS; Lawrence KEAIM: To assess whether the fluoride concentration in the humeri of first-lactation, 2-year-old dairy cows with a spontaneous humeral fracture is significantly different from that of first-lactation, 2-year-old dairy cows without a humeral fracture. METHODS: Two studies were conducted, the first with nine bone samples from 2-year-old, first-calving dairy cows with a humeral fracture (all from the Waikato region) age-matched with seven control bone samples from the Waikato, Bay of Plenty and Manawatū-Whanganui regions. The second study used 26 bone samples from 2-year-old, first-lactation dairy cows with a humeral fracture (from the Otago, Canterbury, Southland, West Coast, Waikato and Manawatū-Whanganui regions) age-matched with 14 control bone samples (all from the Manawatū-Whanganui region or unknown). Control bone samples were from first-lactation, 2-year-old dairy cows that did not have humeral fractures. Bone fluoride concentration was quantified for all samples. RESULTS: The median fluoride concentration of humeri from first-lactation, 2-year-old dairy cows with a humeral fracture was significantly higher than humeri from unaffected control cows in both studies. In Study 1, the median bone fluoride concentration was 599 (IQR 562.7-763.5) mg/kg from case cows and 296.6 (IQR: 191.2-391.7) mg/kg from control cows (p < 0.001), and in Study 2 the median bone fluoride concentration from case and control cows was 415 (IQR: 312.5-515) mg/kg and 290 (IQR: 262.5-410) mg/kg (p = 0.04) respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Although there are limitations to this study due to the unbalanced regional distribution of cases and controls, the results indicate that sub-clinical fluoride toxicosis may be linked to spontaneous humeral fractures in first-lactation dairy cows in New Zealand. Further research is required to determine if bone fluoride concentrations play a role in the pathogenesis of these fractures.Item Biochar and soil properties limit the phytoavailability of lead and cadmium by Brassica chinensis L. in contaminated soils(Springer Nature on behalf of the Shenyang Agricultural University, 2022-12) Houssou AA; Jeyakumar P; Niazi NK; Van Zwieten L; Li X; Huang L; Wei L; Zheng X; Huang Q; Huang Y; Huang X; Wang H; Liu Z; Huang ZThe current study investigated the effect of biochars derived from cinnamomum woodchip, garden waste and mulberry woodchip on soil phytoavailable lead (Pb), cadmium (Cd) pools, and their uptake by Chinese cabbage (Brassica chinensis L.). The biochars were produced at 450 °C of pyrolysis temperature. The contaminated soils were collected from Yunfu (classified as Udept), Jiyuan (Ustalf) and Shaoguan (Udult) cities in China at the depth of 0–20 cm and amended with biochars at the rate of 3% w/w. After mixing the soil with biochar for 14 days, the Chinese cabbage was planted in the amended soils. Then, it was harvested on the 48th day after sowing period. In Udult soil, Chinese cabbage died 18 days after sowing period in control and soils amended with cinnamomum and mulberry biochars. Although only plants grown with the garden waste biochar treatment survived in Udult soil, amendment of garden waste or mulberry biochars at 3% w/w (450 °C) to Udult soil significantly increased (4.95–6.25) soil pH compared to other biochar treatments. In Udept and Ustalf soils, the application of garden waste and mulberry biochars significantly improved plant biomass compared to control, albeit it was dependent on both biochar and soil properties. Garden waste biochar significantly decreased soil Cd phytoavailable concentration by 26% in the Udult soil, while a decrease of soil Cd phytoavailable concentration by 16% and 9% was observed in Ustalf and Udept soils, respectively. The available phosphorus in biochar and soil pH were important factors controlling toxic metal phytouptake by the plant. Thus, the amendment of soil with biochar at 3% can effectively reduce the mobility of Cd and Pb in soil and plant uptake. However, biochar and soil properties should be well-known before being used for soil toxic metal immobilization.Item Remote exploration and monitoring of geothermal sources: A novel method for foliar element mapping using hyperspectral (VNIR-SWIR) remote sensing(Elsevier Ltd, 2023-06) Rodriguez-Gomez C; Kereszturi G; Jeyakumar P; Pullanagari R; Reeves R; Rae A; Procter JNHyperspectral remote sensing is an emerging technique to develop new cost- and time-effective geophysical mapping methods. To overcome challenges introduced by plant cover in geothermal systems globally, we hypothesise that foliage can be used as a proxy to map underlying surface geothermal activity and heat-flux due to their capability on elemental uptake from geothermal fluids and host rock/soil. This study shows for the first time that foliar elemental mapping can be used to image geothermal systems using both high-resolution airborne and satellite hyperspectral images. This study has specifically targeted kanuka shrub (kunzea ericoides var. microflora) as a proxy media to develop air- and spaceborne hyperspectral solutions to monitor inaccessible, biologically and culturally sensitive geothermal areas. Using high resolution airborne AisaFENIX and PRISMA hyperspectral data, foliar element maps for Ag, As, Ba and Sb have been developed using Kernel Partial Least Squares Regression and Random Forest classification models to track their foliar distribution and develop a conceptual model for metal and thermal induced changes in plants. Our study shows evidence that the created foliar element maps are in concordance with independent LiDAR-retrieved canopy structure and height as well as temperature effects of the underlying geothermal field. This study has proven air- and spaceborne hyperspectral sensors can indeed capture critical information within the VNIR and SWIR regions (e.g. ∼452, ∼500, ∼670, ∼820, ∼970, ∼1180, ∼1400 and ∼2000 nm) that can be used to identify metal and thermal-induced spectral changes in plants reliably (overall accuracy of 0.41–0.66) with remotely sensed imagery. Our non-invasive method using hyperspectral remote sensing can complement existing practices for exploration and management of renewable geothermal resources through timely monitoring from air- and spaceborne platforms.Item A low-cost simple lysimeter soil retriever design for retrieving soil from small lysimeters(IOP Publishing, 2024-06-06) Gunaratnam A; McCurdy M; Grafton M; Jeyakumar P; Davies CE; Bishop P

