Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Protein and Lipid Digestibility of Pasture-Raised and Grain-Finished Beef: An In Vitro Comparison
    (MDPI (Basel, Switzerland), 2023-03-14) Kaur L; Elamurugan A; Chian FM; Zhu X; Boland M; Gagaoua M
    This study compared the digestibility of protein and fat components of pasture-raised and grain-finished beef using an in vitro oral-gastro-small intestinal digestion model. Two commonly consumed beef cuts, tenderloin (Psoas major) and striploin (Longissimus dorsi) were selected for this study. There were no substantial differences between the pasture-raised and grain-finished cuts of meat in terms of protein digestibility, as shown by the protein and peptide breakdown (observed through SDS-PAGE) and the degree of hydrolysis as measured by free amino nitrogen. Tenderloin, however, showed significantly (p < 0.05) higher overall protein digestibility than striploin. Both striploin and tenderloin digests from pasture-raised beef released significantly (p < 0.05) higher total amounts of free long-chain n-3 PUFAs and lower amounts of many free saturated fatty acids, notably palmitic and myristic acids, than those from grain-finished animals. The results suggest greater health benefits from consuming pasture-raised beef, particularly tenderloin.
  • Item
    Actinidin in Green and SunGold Kiwifruit Improves Digestion of Alternative Proteins-An In Vitro Investigation
    (MDPI (Basel, Switzerland), 2022-09-06) Kaur L; Mao B; Bailly J; Oladeji O; Blatchford P; McNabb WC; Recio I
    Both Hayward (green) and SunGold (gold) kiwifruit varieties contain a proteolytic enzyme, actinidin, that has been reported to enhance the upper tract digestion of animal proteins. Unlike the other gold varieties, which do not contain any actinidin, the SunGold variety contains significantly higher actinidin activity, but its activity is still much lower than that present in the green (Hayward) fruit. The objective of this study was to determine the effectiveness of actinidin in Hayward and SunGold kiwifruit in digesting alternative proteins, including pea protein, almonds, tofu, and quinoa. The protein sources were digested using a three-stage in vitro oral-gastro-small intestinal digestion model. The findings showed that both kiwifruit extracts enhanced the breakdown (observed through SDS-PAGE) for all the studied protein sources, particularly during gastric digestion, possibly due to higher actinidin activity at gastric pH. The increase in the rate of protein breakdown was probably due to the broader specificity of actinidin compared to pepsin. For many protein sources, most of the intact proteins disappeared within the first few minutes of gastric digestion with added kiwifruit extract. Green kiwifruit extract, due to its higher actinidin activity, had a higher effect on protein breakdown than the SunGold extract. However, for some proteins and under certain digestion conditions, SunGold extract resulted in higher protein breakdown. The latter, in the absence of any digestive enzymes, also led to some protein breakdown during the small intestinal digestion phase, which was not the case for the green kiwifruit extract. The green kiwifruit extract led to the greater breakdown of polypeptide chains of Pru-du 6, a major allergen in almonds. The results, for the first time, suggest that both Hayward and SunGold kiwifruit can lead to improved breakdown and digestion of alternative proteins when consumed as part of a meal; and therefore, have the potential to be used as a digestive aid in population groups looking to achieve faster and greater protein digestion such as athletes, elderly and people with the impaired digestive system.
  • Item
    Physico-Chemical Characteristics and In Vitro Gastro-Small Intestinal Digestion of New Zealand Ryegrass Proteins
    (MDPI (Basel, Switzerland), 2021-02-04) Kaur L; Lamsar H; López IF; Filippi M; Ong Shu Min D; Ah-Sing K; Singh J; Moreno FJ
    Being widely abundant, grass proteins could be a novel source of plant proteins for human foods. In this study, ryegrass proteins extracted using two different approaches-chemical and enzymatic extraction, were characterised for their physico-chemical and in vitro digestion properties. A New Zealand perennial ryegrass cultivar Trojan was chosen based on its higher protein and lower dry matter contents. Grass protein concentrate (GPC) with protein contents of approximately 55 and 44% were prepared using the chemical and enzymatic approach, respectively. The thermal denaturation temperature of the GPC extracted via acid precipitation and enzymatic treatment was found to be 68.0 ± 0.05 °C and 66.15 ± 0.03 °C, respectively, showing significant differences in protein's thermal profile according to the method of extraction. The solubility of the GPC was highly variable, depending on the temperature, pH and salt concentration of the dispersion. The solubility of the GPC extracted via enzymatic extraction was significantly lower than the proteins extracted via the chemical method. Digestion of raw GPC was also studied via a gastro-small intestinal in vitro digestion model and was found to be significantly lower, in terms of free amino N release, for the GPC prepared through acid precipitation. These results suggest that the physico-chemical and digestion characteristics of grass proteins are affected by the extraction method employed to extract the proteins. This implies that selection of an appropriate extraction method is of utmost importance for achieving optimum protein functionality during its use for food applications.