Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Emulsifying properties of hemp and whey protein complexes achieved by microparticulation(Elsevier Ltd, 2026-03-01) Ma S; Ye A; Singh H; Acevedo-Fani AHemp is a sustainable source of protein. However, the utilisation of commercial hemp protein (HP) is limited due to its poor functionality. This study provided a microparticulation method to produce hybrid microparticles by complexing HP and whey protein isolate (WPI), and investigated their emulsifying potential. The emulsions, composed of 10 % oil and 0.25–1.8 % protein (non-microparticulated or microparticulated HP/WPI), were produced and the impact of microparticulation on the emulsifying ability of HP/WPI was explored using static light scattering, CLSM, TEM and SDS electrophoresis analysis. The results showed that non-microparticulated HP/WPI stabilised emulsions exhibited preferential whey protein adsorption at the oil-water interface, leading to sufficient protein coverage at most protein concentrations (0.25–1.8 %) with relatively small droplet size (∼0.5 μm) and minimal flocculation. In contrast, in the 'emulsifier-poor' regime (0.25–1 %), microparticulated HP/WPI stabilised emulsions displayed larger droplet size with clear signs of bridging flocculation. However, when the protein concentration was sufficient (≥1.5 % protein), it reached a similar droplet size as that of non-microparticulated HP/WPI emulsion with minimal flocculation. Microparticulation increased HP loading at the interface, while emulsions stabilised by non-microparticulated HP/WPI showed less HP adsorption. Transmission electron microscopy further confirmed the microparticle coverage. Moreover, the heat stability of microparticulated HP/WPI stabilised emulsions increased, compared with non-microparticulated HP/WPI. These findings highlight the potential of microparticulated HP/WPI systems in the application of emulsification and enhance HP applications in the food industry.Item Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins(Elsevier Ltd, 2025-01) Ma S; Ye A; Singh H; Acevedo-Fani AThe rising demand for sustainable proteins leads to increased interest in plant proteins like hemp protein (HP). However, commercial HP's poor functionality, including heat aggregation, limit its use. This study explored the heat-induced interactions of hemp protein particles (HPPs) with milk proteins, specifically whey proteins and caseins. Using various analysis techniques-static light scattering, TEM, SDS electrophoresis, surface hydrophobicity, and free sulfhydryl content-results showed that co-heating HPPs with whey protein isolate (WPI) or sodium caseinate (NaCN) at 95 °C for 20 min reduced HPPs aggregation. HPPs/WPI particles had a d4,3 of ∼3.8 μm, while HPPs/NaCN were ∼1.9 μm, compared to ∼27.5 μm for HPPs alone. SDS-PAGE indicated that whey proteins irreversibly bound to HPPs, through disulfide bonds, whereas casein bound reversibly, possibly involving the chaperone-like property of casein. This study proposes possible mechanisms by which HPPs interact with milk proteins and impact protein aggregation. This may provide opportunities for developing hybrid protein microparticles
