Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
17 results
Search Results
Item Peripherally Restricted Activation of Opioid Receptors Influences Anxiety-Related Behaviour and Alters Brain Gene Expression in a Sex-Specific Manner.(MDPI (Basel, Switzerland), 2024-12-07) Parkar N; Young W; Olson T; Hurst C; Janssen P; Spencer NJ; McNabb WC; Dalziel JE; Szumlinski KK; Shiina TAlthough effects of stress-induced anxiety on the gastrointestinal tract and enteric nervous system (ENS) are well studied, how ENS dysfunction impacts behaviour is not well understood. We investigated whether ENS modulation alters anxiety-related behaviour in rats. We used loperamide, a potent μ-opioid receptor agonist that does not cross the blood-brain barrier, to manipulate ENS function and assess changes in behaviour, gut and brain gene expression, and microbiota profile. Sprague Dawley (male/female) rats were acutely dosed with loperamide (subcutaneous) or control solution, and their behavioural phenotype was examined using open field and elevated plus maze tests. Gene expression in the proximal colon, prefrontal cortex, hippocampus, and amygdala was assessed by RNA-seq and caecal microbiota composition determined by shotgun metagenome sequencing. In female rats, loperamide treatment decreased distance moved and frequency of supported rearing, indicating decreased exploratory behaviour and increased anxiety, which was associated with altered hippocampal gene expression. Loperamide altered proximal colon gene expression and microbiome composition in both male and female rats. Our results demonstrate the importance of the ENS for communication between gut and brain for normo-anxious states in female rats and implicate corticotropin-releasing hormone and gamma-aminobutyric acid gene signalling pathways in the hippocampus. This study also sheds light on sexually dimorphic communication between the gut and the brain. Microbiome and colonic gene expression changes likely reflect localised effects of loperamide related to gut dysmotility. These results suggest possible ENS pharmacological targets to alter gut to brain signalling for modulating mood.Item Study Protocol for a Randomized Controlled Trial Investigating the Effects of the Daily Consumption of Ruminant Milk on Digestive Comfort and Nutrition in Older Women: The YUMMI Study.(MDPI (Basel, Switzerland), 2024-12-06) Ong SP; Miller JC; McNabb WC; Gearry RB; Ware LM; Mullaney JA; Fraser K; Hort J; Bayer SB; Frampton CMA; Roy NC; Miranda JMBACKGROUND: Age-related changes can lead to dietary insufficiency in older adults. The inclusion of high-quality, nutrient-dense foods such as ruminant milks can significantly improve health outcomes. However, many older adults worldwide do not meet daily milk intake recommendations because of digestive discomfort and health concerns. Ovine and caprine milks are increasingly popular for their perceived digestive and nutritional benefits. While preclinical studies suggest differences in milk digestion, human studies investigating acute postprandial responses remain inconclusive, and the impacts of sustained milk consumption remain uncertain. OBJECTIVES: Hence, we present a randomized controlled trial investigating how the sustained consumption of bovine, caprine, or ovine milk influences digestion, nutrition, and metabolism in older women. METHODS: A total of 165 healthy older women were randomized to receive bovine, caprine, or ovine milk, or no milk, twice daily for 12 weeks. The primary outcome is the impact of milk consumption on digestive comfort assessed via the Gastrointestinal Syndrome Rating Scale (GSRS). Secondary outcomes include changes in nutrient intake, plasma amino acid and lipid appearance, bowel habits, the gut microbiota, cardiometabolic health, physical function, physical activity, sleep, mood, sensory perception, and emotional response. CONCLUSIONS: The findings could inform dietary recommendations for older women and facilitate the development of targeted functional food products.Item The impact of heating and drying on protease activities of ruminant milk before and after in vitro infant digestion(Elsevier Ltd, 2023-12-15) Leite JAS; Montoya CA; Loveday SM; Mullaney JA; Loo TS; McNabb WC; Roy NCThis study investigated the effect of heating (63°C/30 min or 75°C/15 s) and drying (spray-drying or freeze-drying) on plasmin, cathepsin D, and elastase activities in bovine, ovine, and caprine milk, compared to non-dried raw milk counterparts. Protease activities and protein hydrolysis were assessed before and after in vitro infant digestion with or without gastric and pancreatic enzymes. At 75°C/15 s, plasmin activity in caprine and ovine milk decreased (69-75%, p<0.05), while cathepsin D activity in spray-dried bovine milk heated increased (2.8-fold, p<0.05). Plasmin and cathepsin D activities increased (<1.2-fold, p<0.05) after in vitro digestion with pancreatin, regardless of milk species. Endogenous milk enzymes hydrolyzed more proteins than gastric enzymes during gastric digestion and contributed to small intestinal digestion. In summary, milk proteases remained active after processing with effects dependent on the species of milk, and they contributed to in vitro protein hydrolysis in the stomach and small intestine.Item Metabolism of Caprine Milk Carbohydrates by Probiotic Bacteria and Caco-2:HT29⁻MTX Epithelial Co-Cultures and Their Impact on Intestinal Barrier Integrity(MDPI (Basel, Switzerland), 2018-07-23) Barnett AM; Roy NC; Cookson AL; McNabb WCThe development and maturation of the neonatal intestine is generally influenced by diet and commensal bacteria, the composition of which, in turn, can be influenced by the diet. Colonisation of the neonatal intestine by probiotic Lactobacillus strains can strengthen, preserve, and improve barrier integrity, and adherence of probiotics to the intestinal epithelium can be influenced by the available carbon sources. The goal of the present study was to examine the role of probiotic lactobacilli strains alone or together with a carbohydrate fraction (CF) from caprine milk on barrier integrity of a co-culture model of the small intestinal epithelium. Barrier integrity (as measured by trans epithelial electrical resistance (TEER)), was enhanced by three bacteria/CF combinations (Lactobacillus rhamnosus HN001, L. plantarum 299v, and L. casei Shirota) to a greater extent than CF or bacteria alone. Levels of occludin mRNA were increased for all treatments compared to untreated co-cultures, and L. plantarum 299v in combination with CF had increased mRNA levels of MUC4, MUC2 and MUC5AC mucins and MUC4 protein abundance. These results indicate that three out of the four probiotic bacteria tested, in combination with CF, were able to elicit a greater increase in barrier integrity of a co-culture model of the small intestinal epithelium compared to that for either component alone. This study provides additional insight into the individual or combined roles of microbe⁻diet interactions in the small intestine and their beneficial contribution to the intestinal barrier.Item Culture media and format alter cellular composition and barrier integrity of porcine colonoid-derived monolayers(Taylor and Francis Group, 2024-04-02) Barnett AM; Mullaney JA; McNabb WC; Roy NCIntestinal organoid technology has revolutionized our approach to in vitro cell culture due in part to their three-dimensional structures being more like the native tissue from which they were derived with respect to cellular composition and architecture. For this reason, organoids are becoming the new gold standard for undertaking intestinal epithelial cell research. Unfortunately, their otherwise advantageous three-dimensional geometry prevents easy access to the apical epithelium, which is a major limitation when studying interactions between dietary or microbial components and host tissues. To overcome this problem, we developed porcine colonoid-derived monolayers cultured on both permeable Transwell inserts and tissue culture treated polystyrene plates. We found that seeding density and culture format altered the expression of genes encoding markers of specific cell types (stem cells, colonocytes, goblets, and enteroendocrine cells), and barrier maturation (tight junctions). Additionally, we found that changes to the formulation of the culture medium altered the cellular composition of colonoids and of monolayers derived from them, resulting in cultures with an increasingly differentiated phenotype that was similar to that of their tissue of origin.Item Variation in milk fat globule size and composition: A source of bioactives for human health(Taylor and Francis Group, 2023) Thum C; Roy NC; Everett DW; McNabb WCMilk fat globules (MFGs) are secreted from the mammalian gland and are composed of a triacylglycerol core surrounded by a triple membrane structure, the milk fat globule membrane (MFGM). The MFGM contains complex lipids and proteins reported to have nutritional, immunological, neurological and digestive functions. Human and ruminant milk are shown to share a similar MFG structure but with different size, profile and abundance of protein and polar lipids. This review summarizes the reported data on human, bovine, caprine and ovine MFG composition and concentration of bioactive components in different MFG-size fractions. A comprehensive understanding of compositional variations between milk from different species and MFG size fractions may help promote various milk sources as targeted supplements to improve human development and health. MFG size and MFGM composition are species-specific and affected by lactation, diet and breed (or maternal origin). Purification and enrichment methods for some bioactive proteins and lipids present in the MFGM have yet to be established or are not scaled sufficiently to be used to supplement human diets. To overcome this problem, MFG size selection through fractionation or herd selection may provide a convenient way to pre-enrich the MFG fraction with specific protein and lipid components to fulfill human dietary and health requirements.Item Understanding the Effects of Lactose Hydrolysis Modeling on the Main Oligosaccharides in Goat Milk Whey Permeate(MDPI (Basel, Switzerland), 2019-09-10) Thum C; Weinborn V; Barile D; McNabb WC; Roy NC; Leite Nobrega de Moura Bell JM; Moreno DA; Villaño DEnzymatic hydrolysis of lactose is a crucial step to improve the efficiency and selectivity of membrane-based separations toward the recovery of milk oligosaccharides free from simple sugars. Response surface methodology was used to investigate the effects temperature (25.9 to 54.1 °C) and amount of enzyme (0.17 to 0.32% w/w) at 1, 2, and 4 h of reaction on the efficiency of lactose hydrolysis by Aspergillus oryzae β-galactosidase, preservation of major goat whey oligosaccharides, and on the de-novo formation of oligosaccharides. Lactose hydrolysis above 99% was achieved at 1, 2, and 4 h, not being significantly affected by temperature and amount of enzyme within the tested conditions. Formation of 4 Hexose (Hex) and 4 Hex 1 Hex and an increased de-novo formation of 2 Hex 1 N-Acetyl-Neuraminic Acid (NeuAc) and 2 Hex 1 N-Glycolylneuraminic acid (NeuGc) was observed in all treatments. Overall, processing conditions using temperatures ≤40 °C and enzyme concentration ≤0.25% resulted in higher preservation/formation of goat whey oligosaccharides.Item The impact of heat treatment of bovine milk on gastric emptying and nutrient appearance in peripheral circulation in healthy females: a randomized controlled trial comparing pasteurized and ultra-high temperature milk(Elsevier Inc on behalf of the American Society for Nutrition, 2024-05-01) Milan AM; Barnett MPG; McNabb WC; Roy NC; Coutinho S; Hoad CL; Marciani L; Nivins S; Sharif H; Calder S; Du P; Gharibans AA; O'Grady G; Fraser K; Bernstein D; Rosanowski SM; Sharma P; Shrestha A; Mithen RFBACKGROUND: Heat treatments of dairy, including pasteurization and ultra-high temperature (UHT) processing, alter milk macromolecular structures, and ultimately affect digestion. In vitro, animal, and human studies show faster nutrient release or circulating appearance after consuming UHT milk (UHT-M) compared with pasteurized milk (PAST-M), with a faster gastric emptying (GE) rate proposed as a possible mechanism. OBJECTIVES: To investigate the impact of milk heat treatment on GE as a mechanism of faster nutrient appearance in blood. We hypothesized that GE and circulating nutrient delivery following consumption would be faster for UHT-M than PAST-M. METHODS: In this double-blind randomized controlled cross-over trial, healthy female (n = 20; 27.3 ± 1.4 y, mean ± SD) habitual dairy consumers, consumed 500 mL of either homogenized bovine UHT-M or PAST-M (1340 compared with 1320 kJ). Gastric content volume (GCV) emptying half-time (T50) was assessed over 3 h by magnetic resonance imaging subjective digestive symptoms, plasma amino acid, lipid and B vitamin concentrations, and gastric myoelectrical activity were measured over 5 h. RESULTS: Although GCV T50 did not differ (102 ± 7 min compared with 89 ± 8 min, mean ± SEM, UHT-M and PAST-M, respectively; P = 0.051), GCV time to emptying 25% of the volume was 31% longer following UHT-M compared with PAST-M (42 ± 2 compared with 32 ± 4 min, P = 0.004). Although GCV remained larger for a longer duration following UHT-M (treatment × time interaction, P = 0.002), plasma essential amino acid AUC was greater following UHT-M than PAST-M (55,324 ± 3809 compared with 36,598 ± 5673 μmol·min·L-1, P = 0.006). Heat treatment did not impact gastric myoelectrical activity, plasma appetite hormone markers or subjective appetite scores. CONCLUSIONS: Contrary to expectations, GE was slower with UHT-M, yet, as anticipated, aminoacidemia was greater. The larger GCV following UHT-M suggests that gastric volume may poorly predict circulating nutrient appearance from complex food matrices. Dairy heat treatment may be an effective tool to modify nutrient release by impacting digestion kinetics. CLINICAL TRIAL REGISTRY: www.anzctr.org.au (ACTRN12620000172909).Item The impact of heat-set milk protein gel textures modified by pH on circulating amino acid appearance and gastric function in healthy female adults: a randomised controlled trial.(Royal Society of Chemistry, 2024-05-21) Milan AM; Menting GGA; Barnett MPG; Liu Y; McNabb WC; Roy NC; Hutchings SC; Mungure T; Weeks M; Li S; Hort J; Calder S; O'Grady G; Mithen RFModification of dairy proteins during processing impacts structural assemblies, influencing textural and nutritional properties of dairy products, and release and availability of amino acids during digestion. By modifying only pH, acid heat-set bovine dairy gels with divergent textural properties were developed to alter protein digestion. In vitro assay confirmed faster digestion of protein from a firm gel (pH 5.65) versus a soft gel (pH 6.55). We hypothesised that firm gel (FIRM-G; pH 5.6) would result in greater indispensable amino acid (IAA) appearance in circulation over 5 h and corresponding differences in gastric myoelectrical activity relative to soft gel (SOFT-G; pH 6.2). In a randomised, single-blind cross-over trial, healthy females (n = 20) consumed 150 g of each gel; plasma amino acid appearance was assessed over 5 hours. Iso-nitrogenous, iso-caloric gels were prepared from identical mixtures of bovine milk and whey protein concentrates; providing 17.7 g (FIRM-G) and 18.9 g (SOFT-G) of protein per serving. Secondary outcomes included gastric myoelectrical activity measured by body surface gastric mapping, glycaemic, triglyceridaemic, and subjective appetite and digestive responses. Overall plasma IAA (area under the curve) did not differ between gels. However, plasma IAA concentrations were higher, and increased more rapidly over time after SOFT-G compared with FIRM-G (1455 ± 53 versus 1350 ± 62 μmol L-1 at 30 min, p = 0.024). Similarly, total, branched-chain and dispensable amino acids were higher at 30 min with SOFT-G than FIRM-G (total: 3939 ± 97 versus 3702 ± 127 μmol L-1, p = 0.014; branched-chain: 677 ± 30 versus 619 ± 34 μmol L-1, p = 0.047; dispensable: 2334 ± 53 versus 2210 ± 76 μmol L-1, p = 0.032). All other measured parameters were similar between gels. Peak postprandial aminoacidaemia was higher and faster following ingestion of SOFT-G. Customised plasma amino acid appearance from dairy is achievable by altering gel coagulum structure using pH during processing and may have minimal influence on related postprandial responses, with implications for targeting food design for optimal health. The Clinical Trial Registry number is ACTRN12622001418763 (https://www.anzctr.org.au) registered November 7, 2022.Item Slowed gastrointestinal transit is associated with an altered caecal microbiota in an aged rat model(Frontiers Media S.A., 2023-03-14) Parkar N; Dalziel JE; Spencer NJ; Janssen P; McNabb WC; Young W; Butcher JGastrointestinal (GI) motility is largely dependent upon activity within the enteric nervous system (ENS) and is an important part of the digestive process. Dysfunction of the ENS can impair GI motility as is seen in the case of constipation where gut transit time is prolonged. Animal models mimicking symptoms of constipation have been developed by way of pharmacological manipulations. Studies have reported an association between altered GI motility and gut microbial population. Little is known about the changes in gut microbiota profile resulting specifically from pharmacologically induced slowed GI motility in rats. Moreover, the relationship between gut microbiota and altered intestinal motility is based on studies using faecal samples, which are easier to obtain but do not accurately reflect the intestinal microbiome. The aim of this study was to examine how delayed GI transit due to opioid receptor agonism in the ENS modifies caecal microbiota composition. Differences in caecal microbial composition of loperamide-treated or control male Sprague Dawley rats were determined by 16S rRNA gene amplicon sequencing. The results revealed that significant differences were observed at both genus and family level between treatment groups. Bacteroides were relatively abundant in the loperamide-induced slowed GI transit group, compared to controls. Richness and diversity of the bacterial communities was significantly lower in the loperamide-treated group compared to the control group. Understanding the link between specific microbial species and varying transit times is crucial to design interventions targeting the microbiome and to treat intestinal motility disorders.
