Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Dietary patterns influencing the human colonic microbiota from infancy to centenarian age: a narrative review
    (Frontiers Media S A, 2025-06-04) Geniselli da Silva V; Roy NC; Smith NW; Wall C; Mullaney JA; McNabb WC; Benítez-Páez A
    Our dietary choices not only affect our body but also shape the microbial community inhabiting our large intestine. The colonic microbiota strongly influences our physiology, playing a crucial role in both disease prevention and development. Hence, dietary strategies to modulate colonic microbes have gained notable attention. However, most diet-colonic microbiota research has focused on adults, often neglecting other key life stages, such as infancy and older adulthood. In this narrative review, we explore the impact of various dietary patterns on the colonic microbiota from early infancy to centenarian age, aiming to identify age-specific diets promoting health and well-being by nourishing the microbiota. Diversified diets rich in fruits, vegetables, and whole grains, along with daily consumption of fermented foods, and moderate amounts of fish and lean meats (two to four times a week), increase colonic microbial diversity, the abundance of saccharolytic taxa, and the production of beneficial microbial metabolites. Most of the current knowledge of diet-microbiota interactions is limited to studies using fecal samples as a proxy. Future directions in colonic microbiota research include personalized in silico simulations to predict the impact of diets on colonic microbes. Complementary to traditional methodologies, modeling has the potential to reduce the costs of colonic microbiota investigations, accelerate our understanding of diet-microbiota interactions, and contribute to the advancement of personalized nutrition across various life stages.
  • Item
    Increasing Evidence That Irritable Bowel Syndrome and Functional Gastrointestinal Disorders Have a Microbial Pathogenesis
    (Frontiers Media S.A., 2020-09-09) Carco C; Young W; Gearry RB; Talley NJ; McNabb WC; Roy NC; Ianiro G
    The human gastrointestinal tract harbors most of the microbial cells inhabiting the body, collectively known as the microbiota. These microbes have several implications for the maintenance of structural integrity of the gastrointestinal mucosal barrier, immunomodulation, metabolism of nutrients, and protection against pathogens. Dysfunctions in these mechanisms are linked to a range of conditions in the gastrointestinal tract, including functional gastrointestinal disorders, ranging from irritable bowel syndrome, to functional constipation and functional diarrhea. Irritable bowel syndrome is characterized by chronic abdominal pain with changes in bowel habit in the absence of morphological changes. Despite the high prevalence of irritable bowel syndrome in the global population, the mechanisms responsible for this condition are poorly understood. Although alterations in the gastrointestinal microbiota, low-grade inflammation and immune activation have been implicated in the pathophysiology of functional gastrointestinal disorders, there is inconsistency between studies and a lack of consensus on what the exact role of the microbiota is, and how changes to it relate to these conditions. The complex interplay between host factors, such as microbial dysbiosis, immune activation, impaired epithelial barrier function and motility, and environmental factors, including diet, will be considered in this narrative review of the pathophysiology of functional gastrointestinal disorders.
  • Item
    Gut Microbial Metabolites and Biochemical Pathways Involved in Irritable Bowel Syndrome: Effects of Diet and Nutrition on the Microbiome
    (Elsevier Inc on behalf of the American Society for Nutrition, 2020-05) James SC; Fraser K; Young W; McNabb WC; Roy NC
    The food we consume and its interactions with the host and their gut microbiota affect normal gut function and health. Functional gut disorders (FGDs), including irritable bowel syndrome (IBS), can result from negative effects of these interactions, leading to a reduced quality of life. Certain foods exacerbate or reduce the severity and prevalence of FGD symptoms. IBS can be used as a model of perturbation from normal gut function with which to study the impact of foods and diets on the severity and symptoms of FGDs and understand how critical processes and biochemical mechanisms contribute to this impact. Analyzing the complex interactions between food, host, and microbial metabolites gives insights into the pathways and processes occurring in the gut which contribute to FGDs. The following review is a critical discussion of the literature regarding metabolic pathways and dietary interventions relevant to FGDs. Many metabolites, for example bile acids, SCFAs, vitamins, amino acids, and neurotransmitters, can be altered by dietary intake, and could be valuable for identifying perturbations in metabolic pathways that distinguish a "normal, healthy" gut from a "dysfunctional, unhealthy" gut. Dietary interventions for reducing symptoms of FGDs are becoming more prevalent, but studies investigating the underlying mechanisms linked to host, microbiome, and metabolite interactions are less common. Therefore, we aim to evaluate the recent literature to assist with further progression of research in this field.
  • Item
    Effects of early postnatal life nutritional interventions on immune-microbiome interactions in the gastrointestinal tract and implications for brain development and function
    (Frontiers Media S A, 2022-11-23) Mullaney JA; Roy NC; Halliday C; Young W; Altermann E; Kruger MC; Dilger RN; McNabb WC; Wang H
    The gastrointestinal (GI) microbiota has co-evolved with the host in an intricate relationship for mutual benefit, however, inappropriate development of this relationship can have detrimental effects. The developing GI microbiota plays a vital role during the first 1,000 days of postnatal life, during which occurs parallel development and maturation of the GI tract, immune system, and brain. Several factors such as mode of delivery, gestational age at birth, exposure to antibiotics, host genetics, and nutrition affect the establishment and resultant composition of the GI microbiota, and therefore play a role in shaping host development. Nutrition during the first 1,000 days is considered to have the most potential in shaping microbiota structure and function, influencing its interactions with the immune system in the GI tract and consequent impact on brain development. The importance of the microbiota-GI-brain (MGB) axis is also increasingly recognized for its importance in these developmental changes. This narrative review focuses on the importance of the GI microbiota and the impact of nutrition on MGB axis during the immune system and brain developmental period in early postnatal life of infants.