Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
6 results
Search Results
Item New Campylobacter Lineages in New Zealand Freshwater: Pathogenesis and Public Health Implications(John Wiley and Sons, 2024-12) Cookson AL; Burgess S; Midwinter AC; Marshall JC; Moinet M; Rogers L; Fayaz A; Biggs PJ; Brightwell GThis study investigated the diversity of thermophilic Campylobacter species isolated from three New Zealand freshwater catchments affected by pastoral and urban activities. Utilising matrix-assisted laser desorption ionisation-time of flight and whole genome sequence analysis, the study identified Campylobacter jejuni (n = 46, 46.0%), C. coli (n = 39, 39%), C. lari (n = 4, 4.0%), and two novel Campylobacter species lineages (n = 11, 11%). Core genome sequence analysis provided evidence of prolonged persistence or continuous faecal shedding of closely related strains. The C. jejuni isolates displayed distinct sequence types (STs) associated with human, ruminant, and environmental sources, whereas the C. coli STs included waterborne ST3302 and ST7774. Recombination events affecting loci implicated in human pathogenesis and environmental persistence were observed, particularly in the cdtABC operon (encoding the cytolethal distending toxin) of non-human C. jejuni STs. A low diversity of antimicrobial resistance genes (aadE-Cc in C. coli), with genotype/phenotype concordance for tetracycline resistance (tetO) in three ST177 isolates, was noted. The data suggest the existence of two types of naturalised waterborne Campylobacter: environmentally persistent strains originating from waterbirds and new environmental species not linked to human campylobacteriosis. Identifying and understanding naturalised Campylobacter species is crucial for accurate waterborne public health risk assessments and the effective allocation of resources for water quality management.Item Population structure and pathogen interaction of Escherichia coli in freshwater: Implications of land-use for water quality and public health in Aotearoa New Zealand.(John Wiley & Sons, Inc., 2024-08-02) Cookson AL; Devane M; Marshall JC; Moinet M; Gardner A; Collis RM; Rogers L; Biggs PJ; Pita AB; Cornelius AJ; Haysom I; Hayman DTS; Gilpin BJ; Leonard MFreshwater samples (n = 199) were obtained from 41 sites with contrasting land-uses (avian, low impact, dairy, urban, sheep and beef, and mixed sheep, beef and dairy) and the E. coli phylotype of 3980 isolates (20 per water sample enrichment) was determined. Eight phylotypes were identified with B1 (48.04%), B2 (14.87%) and A (14.79%) the most abundant. Escherichia marmotae (n = 22), and Escherichia ruysiae (n = 1), were rare (0.68%) suggesting that these environmental strains are unlikely to confound water quality assessments. Phylotypes A and B1 were overrepresented in dairy and urban sites (p < 0.0001), whilst B2 were overrepresented in low impact sites (p < 0.0001). Pathogens ((Salmonella, Campylobacter, Cryptosporidium or Giardia) and the presence of diarrhoeagenic E. coli-associated genes (stx and eae) were detected in 89.9% (179/199) samples, including 80.5% (33/41) of samples with putative non-recent faecal inputs. Quantitative PCR to detect microbial source tracking targets from human, ruminant and avian contamination were concordant with land-use type and E. coli phylotype abundance. This study demonstrated that a potential recreational health risk remains where pathogens occurred in water samples with low E. coli concentration, potential non-recent faecal sources, low impact sites and where human, ruminant and avian faecal sources were absent.Item Molecular typing of Leptospira spp. in farmed and wild mammals reveals new host-serovar associations in New Zealand.(Taylor and Francis Group, 2024-01-01) Wilkinson DA; Edwards M; Shum C; Moinet M; Anderson NE; Benschop J; Nisa SAIMS: To apply molecular typing to DNA isolated from historical samples to determine Leptospira spp. infecting farmed and wild mammals in New Zealand. MATERIALS AND METHODS: DNA samples used in this study were extracted from urine, serum or kidney samples (or Leptospira spp. cultures isolated from them) collected between 2007 and 2017 from a range of domestic and wildlife mammalian species as part of different research projects at Massey University. Samples were included in the study if they met one of three criteria: samples that tested positive with a lipL32 PCR for pathogenic Leptospira; samples that tested negative by lipL32 PCR but were recorded as positive to PCR for pathogenic Leptospira in the previous studies; or samples that were PCR-negative in all studies but were from animals with positive agglutination titres against serogroup Tarassovi. DNA samples were typed using PCR that targeted either the glmU or gyrB genetic loci. The resulting amplicons were sequenced and typed relative to reference sequences. RESULTS: We identified several associations between mammalian hosts and Leptospira strains/serovars that had not been previously reported in New Zealand. Leptospira borgpetersenii strain Pacifica was found in farmed red deer (Cervus elaphus) samples, L. borgpetersenii serovars Balcanica and Ballum were found in wild red deer samples, Leptospira interrogans serovar Copenhageni was found in stoats (Mustela erminea) and brushtail possums (Trichosurus vulpecula), and L. borgpetersenii was found in a ferret (Mustela putorius furo). Furthermore, we reconfirmed previously described associations including dairy cattle with L. interrogans serovars Copenhageni and Pomona and L. borgpetersenii serovars Ballum, Hardjo type bovis and strain Pacifica, sheep with L. interrogans serovar Pomona and L. borgpetersenii serovar Hardjo type bovis, brushtail possum with L. borgpetersenii serovar Balcanica, farmed deer with L. borgpetersenii serovar Hardjo type bovis and hedgehogs (Erinaceus europaeus) with L. borgpetersenii serovar Ballum. CONCLUSIONS: This study provides an updated summary of host-Leptospira associations in New Zealand and highlights the importance of molecular typing. Furthermore, strain Pacifica, which was first identified as Tarassovi using serological methods in dairy cattle in 2016, has circulated in animal communities since at least 2007 but remained undetected as serology is unable to distinguish the different genotypes. CLINICAL RELEVANCE: To date, leptospirosis in New Zealand has been diagnosed with serological typing, which is deficient in typing all strains in circulation. Molecular methods are necessary to accurately type strains of Leptospira spp. infecting mammals in New Zealand.Item High-resolution genomic analysis to investigate the impact of the invasive brushtail possum (Trichosurus vulpecula) and other wildlife on microbial water quality assessments.(Public Library of Science (PLoS), 2024-01-18) Moinet M; Rogers L; Biggs P; Marshall J; Muirhead R; Devane M; Stott R; Cookson A; Adenyo CEscherichia coli are routine indicators of fecal contamination in water quality assessments. Contrary to livestock and human activities, brushtail possums (Trichosurus vulpecula), common invasive marsupials in Aotearoa/New Zealand, have not been thoroughly studied as a source of fecal contamination in freshwater. To investigate their potential role, Escherichia spp. isolates (n = 420) were recovered from possum gut contents and feces and were compared to those from water, soil, sediment, and periphyton samples, and from birds and other introduced mammals collected within the Mākirikiri Reserve, Dannevirke. Isolates were characterized using E. coli-specific real-time PCR targeting the uidA gene, Sanger sequencing of a partial gnd PCR product to generate a gnd sequence type (gST), and for 101 isolates, whole genome sequencing. Escherichia populations from 106 animal and environmental sample enrichments were analyzed using gnd metabarcoding. The alpha diversity of Escherichia gSTs was significantly lower in possums and animals compared with aquatic environmental samples, and some gSTs were shared between sample types, e.g., gST535 (in 85% of samples) and gST258 (71%). Forty percent of isolates gnd-typed and 75% of reads obtained by metabarcoding had gSTs shared between possums, other animals, and the environment. Core-genome single nucleotide polymorphism (SNP) analysis showed limited variation between several animal and environmental isolates (<10 SNPs). Our data show at an unprecedented scale that Escherichia clones are shared between possums, other wildlife, water, and the wider environment. These findings support the potential role of possums as contributors to fecal contamination in Aotearoa/New Zealand freshwater. Our study deepens the current knowledge of Escherichia populations in under-sampled wildlife. It presents a successful application of high-resolution genomic methods for fecal source tracking, thereby broadening the analytical toolbox available to water quality managers. Phylogenetic analysis of isolates and profiling of Escherichia populations provided useful information on the source(s) of fecal contamination and suggest that comprehensive invasive species management strategies may assist in restoring not only ecosystem health but also water health where microbial water quality is compromised.Item A cross-sectional investigation of Leptospira at the wildlife-livestock interface in New Zealand(PLOS, 2023-09-06) Moinet M; Oosterhof H; Nisa S; Haack N; Wilkinson DA; Aberdein D; Russell JC; Vallée E; Collins-Emerson J; Heuer C; Benschop J; Stevenson BThere has been a recent upsurge in human cases of leptospirosis in New Zealand, with wildlife a suspected emerging source, but up-to-date knowledge on this topic is lacking. We conducted a cross-sectional study in two farm environments to estimate Leptospira seroprevalence in wildlife and sympatric livestock, PCR/culture prevalence in wildlife, and compare seroprevalence and prevalence between species, sex, and age groups. Traps targeting house mice (Mus musculus), black rats (Rattus rattus), hedgehogs (Erinaceus europaeus) and brushtail possums (Trichosurus vulpecula) were set for 10 trap-nights in March-April 2017 on a dairy (A) and a beef and sheep (B) farm. Trapped wild animals and an age-stratified random sample of domestic animals, namely cattle, sheep and working dogs were blood sampled. Sera were tested by microagglutination test for five serogroups and titres compared using a Proportional Similarity Index (PSI). Wildlife kidneys were sampled for culture and qPCR targeting the lipL32 gene. True prevalence in mice was assessed using occupancy modelling by collating different laboratory results. Infection profiles varied by species, age group and farm. At the MAT cut-point of ≥ 48, up to 78% of wildlife species, and 16-99% of domestic animals were seropositive. Five of nine hedgehogs, 23/105 mice and 1/14 black rats reacted to L. borgpetersenii sv Ballum. The sera of 4/18 possums and 4/9 hedgehogs reacted to L. borgpetersenii sv Hardjobovis whilst 1/18 possums and 1/9 hedgehogs reacted to Tarassovi. In ruminants, seroprevalence for Hardjobovis and Pomona ranged 0-90% and 0-71% depending on the species and age group. Titres against Ballum, Tarassovi and Copenhageni were also observed in 4-20%, 0-25% and 0-21% of domestic species, respectively. The PSI indicated rodents and livestock had the most dissimilar serological responses. Three of nine hedgehogs, 31/105 mice and 2/14 rats were carrying leptospires (PCR and/or culture positive). True prevalence estimated by occupancy modelling in mice was 38% [95% Credible Interval 26, 51%] on Farm A and 22% [11, 40%] on Farm B. In the same environment, exposure to serovars found in wildlife species was commonly detected in livestock. Transmission pathways between and within species should be assessed to help in the development of efficient mitigation strategies against Leptospira.Item Whole genome sequence analysis of ESBL-producing Escherichia coli recovered from New Zealand freshwater sites.(2022-10) Burgess SA; Moinet M; Brightwell G; Cookson ALExtended-spectrum beta lactamase (ESBL)-producing Escherichia coli are often isolated from humans with urinary tract infections and may display a multidrug-resistant phenotype. These pathogens represent a target for a One Health surveillance approach to investigate transmission between humans, animals and the environment. This study examines the multidrug-resistant phenotype and whole genome sequence data of four ESBL-producing E. coli isolated from freshwater in New Zealand. All four isolates were obtained from a catchment with a mixed urban and pastoral farming land-use. Three isolates were sequence type (ST) 131 (CTX-M-27-positive) and the other ST69 (CTX-M-15-positive); a phylogenetic comparison with other locally isolated strains demonstrated a close relationship with New Zealand clinical isolates. Genes associated with resistance to antifolates, tetracyclines, aminoglycosides and macrolides were identified in all four isolates, together with fluoroquinolone resistance in two isolates. The ST69 isolate harboured the bla CTX-M-15 gene on a IncHI2A plasmid, and two of the three ST131 isolates harboured the bla CTX-M-27 genes on IncF plasmids. The last ST131 isolate harboured bla CTX-M-27 on the chromosome in a unique site between gspC and gspD. These data highlight a probable human origin of the isolates with subsequent transmission from urban centres through wastewater to the wider environment.
