Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots.
    (Springer Nature Limited, 2023-10-27) Muylaert RL; Wilkinson DA; Kingston T; D'Odorico P; Rulli MC; Galli N; John RS; Alviola P; Hayman DTS
    The emergence of SARS-like coronaviruses is a multi-stage process from wildlife reservoirs to people. Here we characterize multiple drivers-landscape change, host distribution, and human exposure-associated with the risk of spillover of zoonotic SARS-like coronaviruses to help inform surveillance and mitigation activities. We consider direct and indirect transmission pathways by modeling four scenarios with livestock and mammalian wildlife as potential and known reservoirs before examining how access to healthcare varies within clusters and scenarios. We found 19 clusters with differing risk factor contributions within a single country (N = 9) or transboundary (N = 10). High-risk areas were mainly closer (11-20%) rather than far ( < 1%) from healthcare. Areas far from healthcare reveal healthcare access inequalities, especially Scenario 3, which includes wild mammals and not livestock as secondary hosts. China (N = 2) and Indonesia (N = 1) had clusters with the highest risk. Our findings can help stakeholders in land use planning, integrating healthcare implementation and One Health actions.
  • Item
    Impact of infectious diseases on wild bovidae populations in Thailand: insights from population modelling and disease dynamics.
    (The Royal Society, 2024-07-03) Horpiencharoen W; Marshall JC; Muylaert RL; John RS; Hayman DTS
    The wildlife and livestock interface is vital for wildlife conservation and habitat management. Infectious diseases maintained by domestic species may impact threatened species such as Asian bovids, as they share natural resources and habitats. To predict the population impact of infectious diseases with different traits, we used stochastic mathematical models to simulate the population dynamics over 100 years for 100 times in a model gaur (Bos gaurus) population with and without disease. We simulated repeated introductions from a reservoir, such as domestic cattle. We selected six bovine infectious diseases; anthrax, bovine tuberculosis, haemorrhagic septicaemia, lumpy skin disease, foot and mouth disease and brucellosis, all of which have caused outbreaks in wildlife populations. From a starting population of 300, the disease-free population increased by an average of 228% over 100 years. Brucellosis with frequency-dependent transmission showed the highest average population declines (-97%), with population extinction occurring 16% of the time. Foot and mouth disease with frequency-dependent transmission showed the lowest impact, with an average population increase of 200%. Overall, acute infections with very high or low fatality had the lowest impact, whereas chronic infections produced the greatest population decline. These results may help disease management and surveillance strategies support wildlife conservation.
  • Item
    Community health and human-animal contacts on the edges of Bwindi Impenetrable National Park, Uganda
    (PLOS, 2021-11-24) Muylaert RL; Davidson B; Ngabirano A; Kalema-Zikusoka G; MacGregor H; Lloyd-Smith JO; Fayaz A; Knox MA; Hayman DTS; Fèvre E
    Cross-species transmission of pathogens is intimately linked to human and environmental health. With limited healthcare and challenging living conditions, people living in poverty may be particularly susceptible to endemic and emerging diseases. Similarly, wildlife is impacted by human influences, including pathogen sharing, especially for species in close contact with people and domesticated animals. Here we investigate human and animal contacts and human health in a community living around the Bwindi Impenetrable National Park (BINP), Uganda. We used contact and health survey data to identify opportunities for cross-species pathogen transmission, focusing mostly on people and the endangered mountain gorilla. We conducted a survey with background questions and self-reported diaries to investigate 100 participants' health, such as symptoms and behaviours, and contact patterns, including direct contacts and sightings over a week. Contacts were revealed through networks, including humans, domestic, peri-domestic, and wild animal groups for 1) contacts seen in the week of background questionnaire completion, and 2) contacts seen during the diary week. Participants frequently felt unwell during the study, reporting from one to 10 disease symptoms at different intensity levels, with severe symptoms comprising 6.4% of the diary records and tiredness and headaches the most common symptoms. After human-human contacts, direct contact with livestock and peri-domestic animals were the most common. The contact networks were moderately connected and revealed a preference in contacts within the same taxon and within their taxa groups. Sightings of wildlife were much more common than touching. However, despite contact with wildlife being the rarest of all contact types, one direct contact with a gorilla with a timeline including concerning participant health symptoms was reported. When considering all interaction types, gorillas mostly exhibited intra-species contact, but were found to interact with five other species, including people and domestic animals. Our findings reveal a local human population with recurrent symptoms of illness in a location with intense exposure to factors that can increase pathogen transmission, such as direct contact with domestic and wild animals and proximity among animal species. Despite significant biases and study limitations, the information generated here can guide future studies, such as models for disease spread and One Health interventions.
  • Item
    The future of zoonotic risk prediction
    (The Royal Society, 2021-11-08) Carlson CJ; Farrell MJ; Grange Z; Han BA; Mollentze N; Phelan AL; Rasmussen AL; Albery GF; Bett B; Brett-Major DM; Cohen LE; Dallas T; Eskew EA; Fagre AC; Forbes KM; Gibb R; Halabi S; Hammer CC; Katz R; Kindrachuk J; Muylaert RL; Nutter FB; Ogola J; Olival KJ; Rourke M; Ryan SJ; Ross N; Seifert SN; Sironen T; Standley CJ; Taylor K; Venter M; Webala PW
    In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges?