Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Insights into the pathogenesis of catastrophic spontaneous humeral fractures in first-lactation dairy cows
    (CSIRO Publishing, Australia, 2025-05-06) Wehrle-Martinez AS; Lawrence KE; Back PJ; Rogers CW; Gibson MJ; Dittmer KE; Eastwood C
    Spontaneous humeral fractures in first-lactation dairy cows have introduced significant challenges to the dairy industry in New Zealand, impacting animal welfare, farm economics, and veterinary practices. This review synthesizes current knowledge on the pathogenesis of these fractures and identifies potential key risk factors. The majority of bones from affected first-lactation dairy cows have osteoporosis, which is associated with inadequate bone formation and increased bone resorption. In addition, low total collagen content in bones from most affected dairy cows supports the hypothesis that inadequate bone formation is an important risk factor associated with humeral fractures in these cows. Spectroscopic analyses further confirmed a significant reduction in bone quality and strength. Novel findings suggest that low liver copper concentration in many of the affected cows' results from the mobilisation of copper to the bone. Although limited, the accumulated evidence suggests that to mitigate the incidence of catastrophic fractures, adequate nutrition (especially protein-energy) should be supplied during important growth periods. While significant progress has been made in understanding the cause of these fractures, many uncertainties and areas requiring further research remain.
  • Item
    Osteoporosis is the cause of spontaneous humeral fracture in dairy cows from New Zealand.
    (2023-01) Wehrle-Martinez A; Lawrence K; Back PJ; Rogers CW; Gibson M; Dittmer KE
    Outbreaks of humeral fractures in dairy cows have been reported in New Zealand for several years. Gross, histologic, and histomorphometric findings in the humerus from primiparous cows with spontaneous humeral fracture were compared to age-matched control cows. Affected cows had a complete nonarticular spiral fracture of the humerus. Histologically affected humeri had a thicker growth plate with abnormal architecture, thinner cortex with increased abnormal resorption, increased resorption in the distal humerus, decreased trabecular density, abnormal trabecular architecture, presence of growth arrest lines and woven bone formation. Histomorphometry showed reduction in bone volume, trabecular perimeter, and trabecular width. Cows grazed on fodder beet had thicker growth plates with an abnormal appearance compared with cows grazed on pasture, and cows with low/marginal liver copper concentration had more resorption cavities in the distal humerus and thinner cortical bone compared with cows with adequate liver copper concentration. Decreased trabecular density (OR = 249.5), abnormal cortical resorption (OR = 54.2), presence of woven bone formation in the proximal metaphysis (OR = 37.2), and the number of resorption cavities in the distal humerus were significantly associated with a high probability of fracture. Ribs had enlargement of the costochondral junction with fractures in different stages of healing. Histology of the ribs revealed abnormal growth plate appearance, presence of fracture lines, callus tissue, fibrosis, and microfractures. Cows with humeral fracture have osteoporosis due to decreased bone formation and increased bone resorption, likely associated with inadequate feed quality and perhaps copper deficiency leading to a reduction in bone strength and fracture.
  • Item
    Bone quality changes as measured by Raman and FTIR spectroscopy in primiparous cows with humeral fracture from New Zealand.
    (2023) Wehrle-Martinez A; Waterland MR; Naffa R; Lawrence K; Back PJ; Rogers CW; Dittmer K
    The occurrence of spontaneous humeral fractures in primiparous dairy cows from New Zealand prompted the study of bone material from affected cows to further characterize this condition and to outline a likely pathogenesis. Previous studies indicate that these cows developed osteoporosis due to periods of suboptimal bone formation followed by increased bone resorption during the period of lactation complicated by copper deficiency. We hypothesized that there are significant differences in the chemical composition/bone quality in bones from cows with spontaneous humeral fracture compared to cows without humeral fractures. In this study, Raman and Fourier transform infrared spectroscopy band ratios were, for the first time, measured, calculated, and compared in bone samples from 67 primiparous dairy cows that suffered a spontaneous fracture of the humerus and 14 age-matched post-calving cows without humeral fractures. Affected bone showed a significantly reduced mineral/matrix ratio, increased bone remodeling, newer bone tissue with lower mineralization and, lower carbonate substitution, and reduced crystallinity. As such, is likely that these have detrimentally impacted bone quality and strength in affected cows.