Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
16 results
Search Results
Item Metabolism of Caprine Milk Carbohydrates by Probiotic Bacteria and Caco-2:HT29⁻MTX Epithelial Co-Cultures and Their Impact on Intestinal Barrier Integrity(MDPI (Basel, Switzerland), 2018-07-23) Barnett AM; Roy NC; Cookson AL; McNabb WCThe development and maturation of the neonatal intestine is generally influenced by diet and commensal bacteria, the composition of which, in turn, can be influenced by the diet. Colonisation of the neonatal intestine by probiotic Lactobacillus strains can strengthen, preserve, and improve barrier integrity, and adherence of probiotics to the intestinal epithelium can be influenced by the available carbon sources. The goal of the present study was to examine the role of probiotic lactobacilli strains alone or together with a carbohydrate fraction (CF) from caprine milk on barrier integrity of a co-culture model of the small intestinal epithelium. Barrier integrity (as measured by trans epithelial electrical resistance (TEER)), was enhanced by three bacteria/CF combinations (Lactobacillus rhamnosus HN001, L. plantarum 299v, and L. casei Shirota) to a greater extent than CF or bacteria alone. Levels of occludin mRNA were increased for all treatments compared to untreated co-cultures, and L. plantarum 299v in combination with CF had increased mRNA levels of MUC4, MUC2 and MUC5AC mucins and MUC4 protein abundance. These results indicate that three out of the four probiotic bacteria tested, in combination with CF, were able to elicit a greater increase in barrier integrity of a co-culture model of the small intestinal epithelium compared to that for either component alone. This study provides additional insight into the individual or combined roles of microbe⁻diet interactions in the small intestine and their beneficial contribution to the intestinal barrier.Item Bovine dairy complex lipids improve in vitro measures of small intestinal epithelial barrier integrity(PLOS, 2018-01-05) Anderson RC; MacGibbon AKH; Haggarty N; Armstrong KM; Roy NC; Brandner JMAppropriate intestinal barrier maturation is essential for absorbing nutrients and preventing pathogens and toxins from entering the body. Compared to breast-fed infants, formula-fed infants are more susceptible to barrier dysfunction-associated illnesses. In infant formula dairy lipids are usually replaced with plant lipids. We hypothesised that dairy complex lipids improve in vitro intestinal epithelial barrier integrity. We tested milkfat high in conjugated linoleic acid, beta serum (SureStart™Lipid100), beta serum concentrate (BSC) and a ganglioside-rich fraction (G600). Using Caco-2 cells as a model of the human small intestinal epithelium, we analysed the effects of the ingredients on trans-epithelial electrical resistance (TEER), mannitol flux, and tight junction protein co-localisation. BSC induced a dose-dependent improvement in TEER across unchallenged cell layers, maintained the co-localisation of tight junction proteins in TNFα-challenged cells with increased permeability, and mitigated the TEER-reducing effects of lipopolysaccharide (LPS). G600 also increased TEER across healthy and LPS-challenged cells, but it did not alter the co-location of tight junction proteins in TNFα-challenged cells. SureStart™Lipid100 had similar TEER-increasing effects to BSC when added at twice the concentration (similar lipid concentration). Ultimately, this research aims to contribute to the development of infant formulas supplemented with dairy complex lipids that support infant intestinal barrier maturation.Item Understanding the Effects of Lactose Hydrolysis Modeling on the Main Oligosaccharides in Goat Milk Whey Permeate(MDPI (Basel, Switzerland), 2019-09-10) Thum C; Weinborn V; Barile D; McNabb WC; Roy NC; Leite Nobrega de Moura Bell JM; Moreno DA; Villaño DEnzymatic hydrolysis of lactose is a crucial step to improve the efficiency and selectivity of membrane-based separations toward the recovery of milk oligosaccharides free from simple sugars. Response surface methodology was used to investigate the effects temperature (25.9 to 54.1 °C) and amount of enzyme (0.17 to 0.32% w/w) at 1, 2, and 4 h of reaction on the efficiency of lactose hydrolysis by Aspergillus oryzae β-galactosidase, preservation of major goat whey oligosaccharides, and on the de-novo formation of oligosaccharides. Lactose hydrolysis above 99% was achieved at 1, 2, and 4 h, not being significantly affected by temperature and amount of enzyme within the tested conditions. Formation of 4 Hexose (Hex) and 4 Hex 1 Hex and an increased de-novo formation of 2 Hex 1 N-Acetyl-Neuraminic Acid (NeuAc) and 2 Hex 1 N-Glycolylneuraminic acid (NeuGc) was observed in all treatments. Overall, processing conditions using temperatures ≤40 °C and enzyme concentration ≤0.25% resulted in higher preservation/formation of goat whey oligosaccharides.Item Impact of a High Protein Intake on the Plasma Metabolome in Elderly Males: 10 Week Randomized Dietary Intervention(Frontiers Media S.A., 2019-12-06) Durainayagam B; Mitchell CJ; Milan AM; Zeng N; Sharma P; Mitchell SM; Ramzan F; Knowles SO; Sjödin A; Wagner K-H; Roy NC; Fraser K; Cameron-Smith DHigh protein diets may improve the maintenance of skeletal muscle mass in the elderly, although it remains less clear what broader impact such diets have on whole body metabolic regulation in the elderly. Non-targeted polar metabolomics analysis using HILIC HPLC-MS was used to profile the circulating plasma metabolome of elderly men (n = 31; 74.7 ± 4.0 years) who were randomized to consume for 10 weeks a diet designed to achieve either protein (RDA; 0.8·g-1·kg-1) or that doubled this recommend intake (2RDA; 1.6.g.kg-1). A limited number of plasma metabolites (n = 24) were significantly differentially regulated by the diet. These included markers of protein anabolism, which increased by the 2RDA diet, including; urea, creatine, and glutarylcarnitine. Whilst in response to the RDA diet; glutamine, glutamic acid, and proline were increased, relative to the 2RDA diet (p < 0.05). Metaboanalyst identified six major metabolic pathways to be influenced by the quantity of protein intake, most notably the arginine and proline pathways. Doubling of the recommended protein intake in older males over 10 weeks exerted only a limited impact on circulating metabolites, as determined by LC-MS. This metabolomic response was almost entirely due to increased circulating abundances of metabolites potentially indicative of altered protein anabolism, without evidence of impact on pathways for metabolic health. Trial Registration: This trial was registered on 3rd March 2016 at the Australia New Zealand Clinical Trial Registry (www.anzctr.org.au) at ACTRN 12616000310460.Item The Classification and Evolution of Bacterial Cross-Feeding(Frontiers Media S.A., 2019-05-14) Smith NW; Shorten PR; Altermann E; Roy NC; McNabb WC; Harcombe WBacterial feeding has evolved toward specific evolutionary niches and the sources of energy differ between species and strains. Although bacteria fundamentally compete for nutrients, the excreted products from one strain may be the preferred energy source or a source of essential nutrients for another strain. The large variability in feeding preferences between bacterial strains often provides for complex cross-feeding relationships between bacteria, particularly in complex environments such as the human lower gut, which impacts on the host's digestion and nutrition. Although a large amount of information is available on cross-feeding between bacterial strains, it is important to consider the evolution of cross-feeding. Adaptation to environmental stimuli is a continuous process, thus understanding the evolution of microbial cross-feeding interactions allows us to determine the resilience of microbial populations to changes to this environment, such as changes in nutrient supply, and how new interactions might emerge in the future. In this review, we provide a framework of terminology dividing bacterial cross-feeding into four forms that can be used for the classification and analysis of cross-feeding dynamics. Under the proposed framework, we discuss the evolutionary origins for the four forms of cross-feeding and factors such as spatial structure that influence their emergence and subsequent persistence. This review draws from both the theoretical and experimental evolutionary literature to provide a cross-disciplinary perspective on the evolution of different types of cross-feeding.Item Protein Intake at Twice the RDA in Older Men Increases Circulatory Concentrations of the Microbiome Metabolite Trimethylamine-N-Oxide (TMAO)(MDPI (Basel, Switzerland), 2019-09-12) Mitchell SM; Milan AM; Mitchell CJ; Gillies NA; D'Souza RF; Zeng N; Ramzan F; Sharma P; Knowles SO; Roy NC; Sjödin A; Wagner K-H; Zeisel SH; Cameron-Smith DHigher dietary protein intake is increasingly recommended for the elderly; however, high protein diets have also been linked to increased cardiovascular disease (CVD) risk. Trimethylamine-N-oxide (TMAO) is a bacterial metabolite derived from choline and carnitine abundant from animal protein-rich foods. TMAO may be a novel biomarker for heightened CVD risk. The purpose of this study was to assess the impact of a high protein diet on TMAO. Healthy men (74.2 ± 3.6 years, n = 29) were randomised to consume the recommended dietary allowance of protein (RDA: 0.8 g protein/kg bodyweight/day) or twice the RDA (2RDA) as part of a supplied diet for 10 weeks. Fasting blood samples were collected pre- and post-intervention for measurement of TMAO, blood lipids, glucose tolerance, insulin sensitivity, and inflammatory biomarkers. An oral glucose tolerance test was also performed. In comparison with RDA, the 2RDA diet increased circulatory TMAO (p = 0.002) but unexpectedly decreased renal excretion of TMAO (p = 0.003). LDL cholesterol was increased in 2RDA compared to RDA (p = 0.049), but no differences in other biomarkers of CVD risk and insulin sensitivity were evident between groups. In conclusion, circulatory TMAO is responsive to changes in dietary protein intake in older healthy males.Item Lipidomics of Brain Tissues in Rats Fed Human Milk from Chinese Mothers or Commercial Infant Formula(MDPI (Basel, Switzerland), 2019-10-28) Su M; Subbaraj AK; Fraser K; Qi X; Jia H; Chen W; Gomes Reis M; Agnew M; Day L; Roy NC; Young WHolistic benefits of human milk to infants, particularly brain development and cognitive behavior, have stipulated that infant formula be tailored in composition like human milk. However, the composition of human milk, especially lipids, and their effects on brain development is complex and not fully elucidated. We evaluated brain lipidome profiles in weanling rats fed human milk or infant formula using non-targeted UHPLC-MS techniques. We also compared the lipid composition of human milk and infant formula using conventional GC-FID and HPLC-ELSD techniques. The sphingomyelin class of lipids was significantly higher in brains of rats fed human milk. Lipid species mainly comprising saturated or mono-unsaturated C18 fatty acids contributed significantly higher percentages to their respective classes in human milk compared to infant formula fed samples. In contrast, PUFAs contributed significantly higher percentages in brains of formula fed samples. Differences between human milk and formula lipids included minor fatty acids such as C8:0 and C12:0, which were higher in formula, and C16:1 and C18:1 n11, which were higher in human milk. Formula also contained higher levels of low- to medium-carbon triacylglycerols, whereas human milk had higher levels of high-carbon triacylglycerols. All phospholipid classes, and ceramides, were higher in formula. We show that brain lipid composition differs in weanling rats fed human milk or infant formula, but dietary lipid compositions do not necessarily manifest in the brain lipidome.Item Infant Complementary Feeding of Prebiotics for the Microbiome and Immunity(MDPI (Basel, Switzerland), 2019-02-09) McKeen S; Young W; Mullaney J; Fraser K; McNabb WC; Roy NCComplementary feeding transitions infants from a milk-based diet to solid foods, providing essential nutrients to the infant and the developing gut microbiome while influencing immune development. Some of the earliest microbial colonisers readily ferment select oligosaccharides, influencing the ongoing establishment of the microbiome. Non-digestible oligosaccharides in prebiotic-supplemented formula and human milk oligosaccharides promote commensal immune-modulating bacteria such as Bifidobacterium, which decrease in abundance during weaning. Incorporating complex, bifidogenic, non-digestible carbohydrates during the transition to solid foods may present an opportunity to feed commensal bacteria and promote balanced concentrations of beneficial short chain fatty acid concentrations and vitamins that support gut barrier maturation and immunity throughout the complementary feeding window.Item Metabolome and microbiome profiling of a stress-sensitive rat model of gut-brain axis dysfunction(Springer Nature Limited, 2019-10-01) Bassett SA; Young W; Fraser K; Dalziel JE; Webster J; Ryan L; Fitzgerald P; Stanton C; Dinan TG; Cryan JF; Clarke G; Hyland N; Roy NCStress negatively impacts gut and brain health. Individual differences in response to stress have been linked to genetic and environmental factors and more recently, a role for the gut microbiota in the regulation of stress-related changes has been demonstrated. However, the mechanisms by which these factors influence each other are poorly understood, and there are currently no established robust biomarkers of stress susceptibility. To determine the metabolic and microbial signatures underpinning physiological stress responses, we compared stress-sensitive Wistar Kyoto (WKY) rats to the normo-anxious Sprague Dawley (SD) strain. Here we report that acute stress-induced strain-specific changes in brain lipid metabolites were a prominent feature in WKY rats. The relative abundance of Lactococcus correlated with the relative proportions of many brain lipids. In contrast, plasma lipids were significantly elevated in response to stress in SD rats, but not in WKY rats. Supporting these findings, we found that the greatest difference between the SD and WKY microbiomes were the predicted relative abundance of microbial genes involved in lipid and energy metabolism. Our results provide potential insights for developing novel biomarkers of stress vulnerability, some of which appear genotype specific.Item Glycan Utilisation and Function in the Microbiome of Weaning Infants(MDPI (Basel, Switzerland), 2019-07-04) McKeen S; Young W; Fraser K; Roy NC; McNabb WCGlycans are present exogenously in the diet, expressed and secreted endogenously by host cells, and produced by microbes. All of these processes result in them being available to the gut microbiome, firmly placing glycans at the interface of diet-microbe-host interactions. The most dramatic shift in dietary sources of glycans occurs during the transition from the milk-based neonatal diet to the diverse omnivorous adult diet, and this has profound effects on the composition of the gut microbiome, gene expression by microbes and host cells, mucin composition, and immune development from innate towards adaptive responses. Understanding the glycan-mediated interactions occurring during this transitional window may inform dietary recommendations to support gut and immune development during a vulnerable age. This review aims to summarise the current state of knowledge on dietary glycan mediated changes that may occur in the infant gut microbiome and immune system during weaning.
