Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 10 of 14
  • Item
    A period of 10 weeks of increased protein consumption does not alter faecal microbiota or volatile metabolites in healthy older men: a randomised controlled trial
    (Cambridge University Press on behalf of The Nutrition Society, 2020-07-02) Mitchell SM; McKenzie EJ; Mitchell CJ; Milan AM; Zeng N; D'Souza RF; Ramzan F; Sharma P; Rettedal E; Knowles SO; Roy NC; Sjödin A; Wagner K-H; O'Sullivan JM; Cameron-Smith D
    Diet has a major influence on the composition and metabolic output of the gut microbiome. Higher-protein diets are often recommended for older consumers; however, the effect of high-protein diets on the gut microbiota and faecal volatile organic compounds (VOC) of elderly participants is unknown. The purpose of the study was to establish if the faecal microbiota composition and VOC in older men are different after a diet containing the recommended dietary intake (RDA) of protein compared with a diet containing twice the RDA (2RDA). Healthy males (74⋅2 (sd 3⋅6) years; n 28) were randomised to consume the RDA of protein (0⋅8 g protein/kg body weight per d) or 2RDA, for 10 weeks. Dietary protein was provided via whole foods rather than supplementation or fortification. The diets were matched for dietary fibre from fruit and vegetables. Faecal samples were collected pre- and post-intervention for microbiota profiling by 16S ribosomal RNA amplicon sequencing and VOC analysis by head space/solid-phase microextraction/GC-MS. After correcting for multiple comparisons, no significant differences in the abundance of faecal microbiota or VOC associated with protein fermentation were evident between the RDA and 2RDA diets. Therefore, in the present study, a twofold difference in dietary protein intake did not alter gut microbiota or VOC indicative of altered protein fermentation.
  • Item
    A protocol combining breath testing and ex vivo fermentations to study the human gut microbiome
    (Elsevier Inc, 2021-03-19) Payling L; Roy NC; Fraser K; Loveday SM; Sims IM; Janssen PH; Hill SJ; Raymond LG; McNabb WC
    This protocol describes the application of breath testing and ex vivo fermentations to study the association between breath methane and the composition and functionality of the gut microbiome. The protocol provides a useful systems biology approach for studying the gut microbiome in humans, which combines standardized methods in human breath testing and fecal sampling. The model described is accessible and easy to repeat, but its relative simplicity means that it can deviate from human physiological conditions.
  • Item
    Differences in Compositions of Gut Bacterial Populations and Bacteriophages in 5-11 Year-Olds Born Preterm Compared to Full Term
    (Frontiers Media S.A., 2020-06-16) Jayasinghe TN; Vatanen T; Chiavaroli V; Jayan S; McKenzie EJ; Adriaenssens E; Derraik JGB; Ekblad C; Schierding W; Battin MR; Thorstensen EB; Cameron-Smith D; Forbes-Blom E; Hofman PL; Roy NC; Tannock GW; Vickers MH; Cutfield WS; O'Sullivan JM; Shkoporov A
    Preterm infants are exposed to major perinatal, post-natal, and early infancy events that could impact on the gut microbiome. These events include infection, steroid and antibiotic exposure, parenteral nutrition, necrotizing enterocolitis, and stress. Studies have shown that there are differences in the gut microbiome during the early months of life in preterm infants. We hypothesized that differences in the gut microbial composition and metabolites in children born very preterm persist into mid-childhood. Participants were healthy prepubertal children aged 5-11 years who were born very preterm (≤32 weeks of gestation; n = 51) or at term (37-41 weeks; n = 50). We recorded the gestational age, birth weight, mode of feeding, mode of birth, age, sex, and the current height and weight of our cohort. We performed a multi'omics [i.e., 16S rRNA amplicon and shotgun metagenomic sequencing, SPME-GCMS (solid-phase microextraction followed by gas chromatography-mass spectrometry)] analysis to investigate the structure and function of the fecal microbiome (as a proxy of the gut microbiota) in our cross-sectional cohort. Children born very preterm were younger (7.8 vs. 8.3 years; p = 0.034), shorter [height-standard deviation score (SDS) 0.31 vs. 0.92; p = 0.0006) and leaner [BMI (body mass index) SDS -0.20 vs. 0.29; p < 0.0001] than the term group. Children born very preterm had higher fecal calprotectin levels, decreased fecal phage richness, lower plasma arginine, lower fecal branched-chain amino acids and higher fecal volatile (i.e., 3-methyl-butanoic acid, butyrolactone, butanoic acid and pentanoic acid) profiles. The bacterial microbiomes did not differ between preterm and term groups. We speculate that the observed very preterm-specific changes were established in early infancy and may impact on the capacity of the very preterm children to respond to environmental changes.
  • Item
    Adaptation of the infant gut microbiome during the complementary feeding transition
    (PLOS, 2022-07-14) McKeen S; Roy NC; Mullaney JA; Eriksen H; Lovell A; Kussman M; Young W; Fraser K; Wall CR; McNabb WC; xia Y
    The infant gut microbiome progresses in composition and function during the introduction of solid foods throughout the first year of life. The purpose of this study was to characterize changes in healthy infant gut microbiome composition, metagenomic functional capacity, and associated metabolites over the course of the complementary feeding period. Fecal samples were obtained at three 'snapshot' timepoints from infants participating in the 'Nourish to Flourish' pilot study: before the introduction of solid foods at approximately 4 months of age, after introducing solid foods at 9 months of age, and after continued diet diversification at 12 months of age. KEGG and taxonomy assignments were correlated with LC-MS metabolomic profiles to identify patterns of co-abundance. The composition of the microbiome diversified during the first year of life, while the functional capacity present in the gut microbiome remained stable. The introduction of solid foods between 4 and 9 months of age corresponded to a larger magnitude of change in relative abundance of sequences assigned to KEGG pathways and taxonomic assignments, as well as to stronger correlations with metabolites, compared to the magnitude of changes and number of correlations seen during continued diet diversification between 9 and 12 months of age. Changes in aqueous fecal metabolites were more strongly correlated with KEGG pathway assignments, while changes in lipid metabolites associated with taxonomic assignments, particularly between 9 and 12 months of age. This study establishes trends in microbiome composition and functional capacity occurring during the complementary feeding period and identifies potential metabolite targets for future investigations.
  • Item
    Increasing Evidence That Irritable Bowel Syndrome and Functional Gastrointestinal Disorders Have a Microbial Pathogenesis
    (Frontiers Media S.A., 2020-09-09) Carco C; Young W; Gearry RB; Talley NJ; McNabb WC; Roy NC; Ianiro G
    The human gastrointestinal tract harbors most of the microbial cells inhabiting the body, collectively known as the microbiota. These microbes have several implications for the maintenance of structural integrity of the gastrointestinal mucosal barrier, immunomodulation, metabolism of nutrients, and protection against pathogens. Dysfunctions in these mechanisms are linked to a range of conditions in the gastrointestinal tract, including functional gastrointestinal disorders, ranging from irritable bowel syndrome, to functional constipation and functional diarrhea. Irritable bowel syndrome is characterized by chronic abdominal pain with changes in bowel habit in the absence of morphological changes. Despite the high prevalence of irritable bowel syndrome in the global population, the mechanisms responsible for this condition are poorly understood. Although alterations in the gastrointestinal microbiota, low-grade inflammation and immune activation have been implicated in the pathophysiology of functional gastrointestinal disorders, there is inconsistency between studies and a lack of consensus on what the exact role of the microbiota is, and how changes to it relate to these conditions. The complex interplay between host factors, such as microbial dysbiosis, immune activation, impaired epithelial barrier function and motility, and environmental factors, including diet, will be considered in this narrative review of the pathophysiology of functional gastrointestinal disorders.
  • Item
    Protein Intake at Twice the RDA in Older Men Increases Circulatory Concentrations of the Microbiome Metabolite Trimethylamine-N-Oxide (TMAO)
    (MDPI (Basel, Switzerland), 2019-09-12) Mitchell SM; Milan AM; Mitchell CJ; Gillies NA; D'Souza RF; Zeng N; Ramzan F; Sharma P; Knowles SO; Roy NC; Sjödin A; Wagner K-H; Zeisel SH; Cameron-Smith D
    Higher dietary protein intake is increasingly recommended for the elderly; however, high protein diets have also been linked to increased cardiovascular disease (CVD) risk. Trimethylamine-N-oxide (TMAO) is a bacterial metabolite derived from choline and carnitine abundant from animal protein-rich foods. TMAO may be a novel biomarker for heightened CVD risk. The purpose of this study was to assess the impact of a high protein diet on TMAO. Healthy men (74.2 ± 3.6 years, n = 29) were randomised to consume the recommended dietary allowance of protein (RDA: 0.8 g protein/kg bodyweight/day) or twice the RDA (2RDA) as part of a supplied diet for 10 weeks. Fasting blood samples were collected pre- and post-intervention for measurement of TMAO, blood lipids, glucose tolerance, insulin sensitivity, and inflammatory biomarkers. An oral glucose tolerance test was also performed. In comparison with RDA, the 2RDA diet increased circulatory TMAO (p = 0.002) but unexpectedly decreased renal excretion of TMAO (p = 0.003). LDL cholesterol was increased in 2RDA compared to RDA (p = 0.049), but no differences in other biomarkers of CVD risk and insulin sensitivity were evident between groups. In conclusion, circulatory TMAO is responsive to changes in dietary protein intake in older healthy males.
  • Item
    Infant Complementary Feeding of Prebiotics for the Microbiome and Immunity
    (MDPI (Basel, Switzerland), 2019-02-09) McKeen S; Young W; Mullaney J; Fraser K; McNabb WC; Roy NC
    Complementary feeding transitions infants from a milk-based diet to solid foods, providing essential nutrients to the infant and the developing gut microbiome while influencing immune development. Some of the earliest microbial colonisers readily ferment select oligosaccharides, influencing the ongoing establishment of the microbiome. Non-digestible oligosaccharides in prebiotic-supplemented formula and human milk oligosaccharides promote commensal immune-modulating bacteria such as Bifidobacterium, which decrease in abundance during weaning. Incorporating complex, bifidogenic, non-digestible carbohydrates during the transition to solid foods may present an opportunity to feed commensal bacteria and promote balanced concentrations of beneficial short chain fatty acid concentrations and vitamins that support gut barrier maturation and immunity throughout the complementary feeding window.
  • Item
    Metabolome and microbiome profiling of a stress-sensitive rat model of gut-brain axis dysfunction
    (Springer Nature Limited, 2019-10-01) Bassett SA; Young W; Fraser K; Dalziel JE; Webster J; Ryan L; Fitzgerald P; Stanton C; Dinan TG; Cryan JF; Clarke G; Hyland N; Roy NC
    Stress negatively impacts gut and brain health. Individual differences in response to stress have been linked to genetic and environmental factors and more recently, a role for the gut microbiota in the regulation of stress-related changes has been demonstrated. However, the mechanisms by which these factors influence each other are poorly understood, and there are currently no established robust biomarkers of stress susceptibility. To determine the metabolic and microbial signatures underpinning physiological stress responses, we compared stress-sensitive Wistar Kyoto (WKY) rats to the normo-anxious Sprague Dawley (SD) strain. Here we report that acute stress-induced strain-specific changes in brain lipid metabolites were a prominent feature in WKY rats. The relative abundance of Lactococcus correlated with the relative proportions of many brain lipids. In contrast, plasma lipids were significantly elevated in response to stress in SD rats, but not in WKY rats. Supporting these findings, we found that the greatest difference between the SD and WKY microbiomes were the predicted relative abundance of microbial genes involved in lipid and energy metabolism. Our results provide potential insights for developing novel biomarkers of stress vulnerability, some of which appear genotype specific.
  • Item
    Gut Microbial Metabolites and Biochemical Pathways Involved in Irritable Bowel Syndrome: Effects of Diet and Nutrition on the Microbiome
    (Elsevier Inc on behalf of the American Society for Nutrition, 2020-05) James SC; Fraser K; Young W; McNabb WC; Roy NC
    The food we consume and its interactions with the host and their gut microbiota affect normal gut function and health. Functional gut disorders (FGDs), including irritable bowel syndrome (IBS), can result from negative effects of these interactions, leading to a reduced quality of life. Certain foods exacerbate or reduce the severity and prevalence of FGD symptoms. IBS can be used as a model of perturbation from normal gut function with which to study the impact of foods and diets on the severity and symptoms of FGDs and understand how critical processes and biochemical mechanisms contribute to this impact. Analyzing the complex interactions between food, host, and microbial metabolites gives insights into the pathways and processes occurring in the gut which contribute to FGDs. The following review is a critical discussion of the literature regarding metabolic pathways and dietary interventions relevant to FGDs. Many metabolites, for example bile acids, SCFAs, vitamins, amino acids, and neurotransmitters, can be altered by dietary intake, and could be valuable for identifying perturbations in metabolic pathways that distinguish a "normal, healthy" gut from a "dysfunctional, unhealthy" gut. Dietary interventions for reducing symptoms of FGDs are becoming more prevalent, but studies investigating the underlying mechanisms linked to host, microbiome, and metabolite interactions are less common. Therefore, we aim to evaluate the recent literature to assist with further progression of research in this field.
  • Item
    Effects of Defatted Rice Bran-Fortified Bread on the Gut Microbiota Composition of Healthy Adults With Low Dietary Fiber Intake: Protocol for a Crossover Randomized Controlled Trial
    (JMIR Publications, 2024-08-29) Ng HM; Maggo J; Wall CL; Bayer SB; McNabb WC; Mullaney JA; Foster M; Cabrera DL; Fraser K; Cooney J; Trower T; Günther CS; Frampton C; Gearry RB; Roy NC
    BACKGROUND: Inadequate dietary fiber (DF) intake is associated with several human diseases. Bread is commonly consumed, and its DF content can be increased by incorporating defatted rice bran (DRB). OBJECTIVE: This first human study on DRB-fortified bread primarily aims to assess the effect of DRB-fortified bread on the relative abundance of a composite of key microbial genera and species in fecal samples. Secondary outcomes include clinical (cardiovascular risk profile), patient-reported (daily bread consumption and bowel movement, gut comfort, general well-being, and total DF intake), biological (fecal microbiota gene abundances, and fecal and plasma metabolites), and physiome (whole-gut and regional transit time and gas fermentation profiles) outcomes in healthy adults with low DF intake. METHODS: This is a 2-armed, placebo-controlled, double-blinded, crossover randomized controlled trial. The study duration is 14 weeks: 2 weeks of lead-in, 4 weeks of intervention per phase, 2 weeks of washout, and 2 weeks of follow-up. Overall, 60 healthy adults with low DF intake (<18 g [female individuals] or <22 g [male individuals] per day) were recruited in Christchurch, New Zealand, between June and December 2022. Randomly assigned participants consumed 3 (female individuals) or 4 (male individuals) slices of DRB-fortified bread per day and then placebo bread, and vice versa. The DRB-fortified bread provided 8 g (female individuals) or 10.6 g (male individuals) of total DF, whereas the placebo (a matched commercial white toast bread) provided 2.7 g (female individuals) or 3.6 g (male individuals) of total DF. Before and after each intervention phase, participants provided fecal and blood samples to assess biological responses; completed a 3-day food diary to assess usual intakes and web-based questionnaires to assess gut comfort, general and mental well-being, daily bread intake, and bowel movement via an app; underwent anthropometry and blood pressure measurements; and drank blue food dye to assess whole-gut transit time. Additionally, 25% (15/60) of the participants ingested Atmo gas-sensing capsules to assess colonic gas fermentation profile and whole-gut and regional transit time. Mean differences from baseline will be compared between the DRB and placebo groups, as well as within groups (after the intervention vs baseline). For metabolome analyses, comparisons will be made within and between groups using postintervention values. RESULTS: Preliminary analysis included 56 participants (n=33, 59% female; n=23, 41% male). Due to the large dataset, data analysis was planned to be fully completed by the last quarter of 2024, with full results expected to be published in peer-reviewed journals by the end of 2024. CONCLUSIONS: This first human study offers insights into the prospect of consuming DRB-fortified bread to effectively modulate health-promoting gut microbes, their metabolism, and DF intake in healthy adults with low DF intake. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12622000884707; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=383814. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/59227.