Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
5 results
Search Results
Item Gut-Brain Axis in the Early Postnatal Years of Life: A Developmental Perspective(Frontiers Media S.A., 2020-08-05) Jena A; Montoya CA; Mullaney JA; Dilger RN; Young W; McNabb WC; Roy NC; Cammarota MEmerging evidence suggests that alterations in the development of the gastrointestinal (GI) tract during the early postnatal period can influence brain development and vice-versa. It is increasingly recognized that communication between the GI tract and brain is mainly driven by neural, endocrine, immune, and metabolic mediators, collectively called the gut-brain axis (GBA). Changes in the GBA mediators occur in response to the developmental changes in the body during this period. This review provides an overview of major developmental events in the GI tract and brain in the early postnatal period and their parallel developmental trajectories under physiological conditions. Current knowledge of GBA mediators in context to brain function and behavioral outcomes and their synthesis and metabolism (site, timing, etc.) is discussed. This review also presents hypotheses on the role of the GBA mediators in response to the parallel development of the GI tract and brain in infants.Item Infant Complementary Feeding of Prebiotics for the Microbiome and Immunity(MDPI (Basel, Switzerland), 2019-02-09) McKeen S; Young W; Mullaney J; Fraser K; McNabb WC; Roy NCComplementary feeding transitions infants from a milk-based diet to solid foods, providing essential nutrients to the infant and the developing gut microbiome while influencing immune development. Some of the earliest microbial colonisers readily ferment select oligosaccharides, influencing the ongoing establishment of the microbiome. Non-digestible oligosaccharides in prebiotic-supplemented formula and human milk oligosaccharides promote commensal immune-modulating bacteria such as Bifidobacterium, which decrease in abundance during weaning. Incorporating complex, bifidogenic, non-digestible carbohydrates during the transition to solid foods may present an opportunity to feed commensal bacteria and promote balanced concentrations of beneficial short chain fatty acid concentrations and vitamins that support gut barrier maturation and immunity throughout the complementary feeding window.Item Gut Microbial Metabolites and Biochemical Pathways Involved in Irritable Bowel Syndrome: Effects of Diet and Nutrition on the Microbiome(Elsevier Inc on behalf of the American Society for Nutrition, 2020-05) James SC; Fraser K; Young W; McNabb WC; Roy NCThe food we consume and its interactions with the host and their gut microbiota affect normal gut function and health. Functional gut disorders (FGDs), including irritable bowel syndrome (IBS), can result from negative effects of these interactions, leading to a reduced quality of life. Certain foods exacerbate or reduce the severity and prevalence of FGD symptoms. IBS can be used as a model of perturbation from normal gut function with which to study the impact of foods and diets on the severity and symptoms of FGDs and understand how critical processes and biochemical mechanisms contribute to this impact. Analyzing the complex interactions between food, host, and microbial metabolites gives insights into the pathways and processes occurring in the gut which contribute to FGDs. The following review is a critical discussion of the literature regarding metabolic pathways and dietary interventions relevant to FGDs. Many metabolites, for example bile acids, SCFAs, vitamins, amino acids, and neurotransmitters, can be altered by dietary intake, and could be valuable for identifying perturbations in metabolic pathways that distinguish a "normal, healthy" gut from a "dysfunctional, unhealthy" gut. Dietary interventions for reducing symptoms of FGDs are becoming more prevalent, but studies investigating the underlying mechanisms linked to host, microbiome, and metabolite interactions are less common. Therefore, we aim to evaluate the recent literature to assist with further progression of research in this field.Item Effects of Defatted Rice Bran-Fortified Bread on the Gut Microbiota Composition of Healthy Adults With Low Dietary Fiber Intake: Protocol for a Crossover Randomized Controlled Trial(JMIR Publications, 2024-08-29) Ng HM; Maggo J; Wall CL; Bayer SB; McNabb WC; Mullaney JA; Foster M; Cabrera DL; Fraser K; Cooney J; Trower T; Günther CS; Frampton C; Gearry RB; Roy NCBACKGROUND: Inadequate dietary fiber (DF) intake is associated with several human diseases. Bread is commonly consumed, and its DF content can be increased by incorporating defatted rice bran (DRB). OBJECTIVE: This first human study on DRB-fortified bread primarily aims to assess the effect of DRB-fortified bread on the relative abundance of a composite of key microbial genera and species in fecal samples. Secondary outcomes include clinical (cardiovascular risk profile), patient-reported (daily bread consumption and bowel movement, gut comfort, general well-being, and total DF intake), biological (fecal microbiota gene abundances, and fecal and plasma metabolites), and physiome (whole-gut and regional transit time and gas fermentation profiles) outcomes in healthy adults with low DF intake. METHODS: This is a 2-armed, placebo-controlled, double-blinded, crossover randomized controlled trial. The study duration is 14 weeks: 2 weeks of lead-in, 4 weeks of intervention per phase, 2 weeks of washout, and 2 weeks of follow-up. Overall, 60 healthy adults with low DF intake (<18 g [female individuals] or <22 g [male individuals] per day) were recruited in Christchurch, New Zealand, between June and December 2022. Randomly assigned participants consumed 3 (female individuals) or 4 (male individuals) slices of DRB-fortified bread per day and then placebo bread, and vice versa. The DRB-fortified bread provided 8 g (female individuals) or 10.6 g (male individuals) of total DF, whereas the placebo (a matched commercial white toast bread) provided 2.7 g (female individuals) or 3.6 g (male individuals) of total DF. Before and after each intervention phase, participants provided fecal and blood samples to assess biological responses; completed a 3-day food diary to assess usual intakes and web-based questionnaires to assess gut comfort, general and mental well-being, daily bread intake, and bowel movement via an app; underwent anthropometry and blood pressure measurements; and drank blue food dye to assess whole-gut transit time. Additionally, 25% (15/60) of the participants ingested Atmo gas-sensing capsules to assess colonic gas fermentation profile and whole-gut and regional transit time. Mean differences from baseline will be compared between the DRB and placebo groups, as well as within groups (after the intervention vs baseline). For metabolome analyses, comparisons will be made within and between groups using postintervention values. RESULTS: Preliminary analysis included 56 participants (n=33, 59% female; n=23, 41% male). Due to the large dataset, data analysis was planned to be fully completed by the last quarter of 2024, with full results expected to be published in peer-reviewed journals by the end of 2024. CONCLUSIONS: This first human study offers insights into the prospect of consuming DRB-fortified bread to effectively modulate health-promoting gut microbes, their metabolism, and DF intake in healthy adults with low DF intake. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12622000884707; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=383814. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/59227.Item Effects of Different Protein Sources on Amino Acid Absorption and Plasma Appearance of Tryptophan, Large Neutral Amino Acids, and Tryptophan Metabolites in Pigs(Elsevier Inc on behalf of American Society for Nutrition, 2024-07-15) Giezenaar C; Montoya CA; Kreutz K; Hodgkinson S; Roy NC; Mace LJ; Fraser K; Fernstrom JD; McNabb WC; Moughan PJBACKGROUND: Absorption of tryptophan (TRP) across the gut epithelium is potentially modulated by competing large neutral amino acids (LNAAs), which could affect the appearance of TRP and its metabolites in the bloodstream. OBJECTIVES: This study aimed to determine, in a growing pig model of an adult human, the absorption of TRP and other LNAAs from the gastrointestinal tract, and plasma appearance of TRP, LNAAs, and TRP metabolites, in response to dietary proteins varying in TRP content. METHODS: Pigs were adapted for 7 d to each of 4 diets that differed in their protein source and TRP content: 1) alpha-lactalbumin (AL; 9.95 mg TRP/g diet DM), 2) whey protein (6.59 mg TRP/g), 3) casein (3.73 mg TRP/g), or 4) zein (0.14 mg TRP/g). On day 8, pigs were euthanised after a 12-h fast (baseline), or 1, 2, 3, 4, or 6 h after they received a test meal consisting of 45 g protein, or a protein-free meal (n = 6 pigs at each time in each meal group). Tryptophan and LNAA absorption from the small intestine, and appearance of TRP, LNAAs, and TRP metabolites (melatonin, serotonin, kynurenine pathway metabolites), in the portal vein and systemic circulation, were determined. RESULTS: AL intake resulted in sustained elevated plasma TRP concentrations after an overnight fast. The amount of TRP absorbed was dose-dependently related to protein TRP content (P = 0.028), with fastest rates for pigs fed AL (371 mg/h). Portal and systemic plasma TRP, TRP/LNAA, and the TRP metabolites were highest (P ≤ 0.05) after AL intake, and remained above baseline levels for ∼4 h postprandially. Absorption rates of TRP correlated with postprandial plasma TRP and TRP metabolites (P ≤ 0.05). CONCLUSIONS: In adult humans, postprandial plasma TRP and TRP metabolite concentrations can likely be modulated by the TRP content of the meal.
