Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Changes in Serum Metabolome Following Low-Energy Diet-Induced Weight Loss in Women with Overweight and Prediabetes: A PREVIEW-New Zealand Sub-Study(MDPI (Basel, Switzerland), 2024-08-01) Relva B; Samuelsson LM; Duarte IF; Fasol U; Edwards PJB; Fogelholm M; Raben A; Poppitt SD; Silvestre MP; Rogero MMAs obesity develops, metabolic changes increase the risk of non-communicable diseases such as type 2 diabetes (T2D). Weight loss is crucial for improving health in T2D and cardiometabolic conditions. However, weight loss rates vary between individuals, even with identical diets or energy restrictions, highlighting the need to identify markers or predictors of weight loss success to enhance intervention outcomes. Using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics, we investigated the change in serum polar metabolites in 28 women with overweight or obesity and prediabetes who completed an 8-week low-energy diet (LED) as part of the PREVIEW (PREVention of diabetes through lifestyle intervention and population studies in Europe and around the World) clinical trial. We aimed to characterize the metabolic shift in substrate oxidation under fixed energy intake (~4 MJ/day) and its relation to weight loss success. Nine of the thirty-four serum metabolites identified significantly changed during the LED phase: 3-hydroxybutyrate, O-acetylcarnitine, 2-hydroxybutyrate, mannose, dimethyl sulfone and isobutyrate increased, whilst choline, creatine and tyrosine decreased. These results confirmed a shift towards lipid oxidation, but no metabolites predicted the response to the LED-induced weight loss. Further studies in larger populations are required to validate these metabolites as biomarkers of diet exposure.Item Glycaemic Response to a Nut-Enriched Diet in Asian Chinese Adults with Normal or High Glycaemia: The Tū Ora RCT(MDPI (Basel, Switzerland), 2024-07) Sequeira-Bisson IR; Lu LW; Silvestre MP; Plank LD; Middleditch N; Acevedo-Fani A; Parry-Strong A; Hollingsworth KG; Tups A; Miles-Chan JL; Krebs JD; Foster M; Poppitt SD; Pribis PNut-based products are a good source of high-quality plant protein in addition to mono- and polyunsaturated fatty acids, and may aid low-glycaemic dietary strategies important for the prevention of type 2 diabetes (T2D). In particular, they may be advantageous in populations susceptible to dysglycaemia, such as Asian Chinese. The present study aimed to compare effects of a higher-protein nut bar (HP-NB, also higher in total fibre and unsaturated fats, comprising mixed almonds and peanuts) vs. an isoenergetic higher-carbohydrate cereal bar (HC-CB) within the diet of 101 Chinese adults with overweight and normo- or hyperglycaemia. Ectopic pancreas and liver fat were characterised using magnetic resonance imaging and spectroscopy (MRI/S) as a secondary outcome. Participants were randomized to receive HP-NB or HC-CB daily as a 1 MJ light meal or snack replacement, in addition to healthy eating advice. Anthropometry and clinical indicators of T2D risk were assessed fasted and during an oral glucose tolerance test (OGTT), pre- and post-intervention. No significant difference was observed between diet groups for body weight, body mass index, waist or hip circumference, blood pressure, glucoregulatory markers, lipid profile or inflammatory markers over 12 weeks (all, p > 0.05). No difference was observed between glycaemic subgroups or those with normal versus high ectopic organ fat. Although HP-NB can attenuate postprandial glycaemia following a meal, no effects were observed for either fasting or glucose-mediated outcomes following longer-term inclusion in the habitual diet of Chinese adults with overweight, including at-risk subgroups.
