Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Evaluation of Protein Adequacy From Plant-Based Dietary Scenarios in Simulation Studies: A Narrative Review
    (Elsevier Inc on behalf of the American Society for Nutrition, 2024-02) Soh BXP; Smith NW; R von Hurst P; McNabb WC
    Although a diet high in plant foods can provide beneficial nutritional outcomes, unbalanced and restrictive plant-based diets may cause nutrient deficiencies. Protein intake from these diets is widely discussed, but the comparison of animal and plant proteins often disregards amino acid composition and digestibility as measurements of protein quality. Poor provision of high-quality protein may result in adverse outcomes, especially for individuals with increased nutrient requirements. Several dietary modeling studies have examined protein adequacy when animal-sourced proteins are replaced with traditional and novel plant proteins, but no review consolidating these findings are available. This narrative review aimed to summarize the approaches of modeling studies for protein intake and protein quality when animal-sourced proteins are replaced with plant foods in diet simulations and examine how these factors vary across age groups. A total of 23 studies using dietary models to predict protein contribution from plant proteins were consolidated and categorized into the following themes-protein intake, protein quality, novel plant-based alternatives, and plant-based diets in special populations. Protein intake from plant-based diet simulations was lower than from diets with animal-sourced foods but met country-specific nutrient requirements. However, protein adequacy from some plant-sourced foods were not met for simulated diets of children and older adults. Reduced amino acid adequacy was observed with increasing intake of plant foods in some scenarios. Protein adequacy was generally dependent on the choice of substitution with legumes, nuts, and seeds providing greater protein intake and quality than cereals. Complete replacement of animal to plant-sourced foods reduced protein adequacy when compared with baseline diets and partial replacements.
  • Item
    Food-breastmilk combinations alter the colonic microbiome of weaning infants: an in silico study
    (American Society for Microbiology, 2024-09) da Silva VG; Smith NW; Mullaney JA; Wall C; Roy NC; McNabb WC; Garrido D
    The introduction of solid foods to infants, also known as weaning, is a critical point for the development of the complex microbial community inhabiting the human colon, impacting host physiology in infancy and later in life. This research investigated in silico the impact of food-breastmilk combinations on growth and metabolite production by colonic microbes of New Zealand weaning infants using the metagenome-scale metabolic model named Microbial Community. Eighty-nine foods were individually combined with breastmilk, and the 12 combinations with the strongest influence on the microbial production of short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) were identified. Fiber-rich and polyphenol-rich foods, like pumpkin and blackcurrant, resulted in the greatest increase in predicted fluxes of total SCFAs and individual fluxes of propionate and acetate when combined, respectively, with breastmilk. Identified foods were further combined with other foods and breastmilk, resulting in 66 multiple food-breastmilk combinations. These combinations altered in silico the impact of individual foods on the microbial production of SCFAs and BCFAs, suggesting that the interaction between the dietary compounds composing a meal is the key factor influencing colonic microbes. Blackcurrant combined with other foods and breastmilk promoted the greatest increase in the production of acetate and total SCFAs, while pork combined with other foods and breastmilk decreased the production of total BCFAs. IMPORTANCE Little is known about the influence of complementary foods on the colonic microbiome of weaning infants. Traditional in vitro and in vivo microbiome methods are limited by their resource-consuming concerns. Modeling approaches represent a promising complementary tool to provide insights into the behavior of microbial communities. This study evaluated how foods combined with other foods and human milk affect the production of short-chain fatty acids and branched-chain fatty acids by colonic microbes of weaning infants using a rapid and inexpensive in silico approach. Foods and food combinations identified here are candidates for future experimental investigations, helping to fill a crucial knowledge gap in infant nutrition.
  • Item
    The role of holistic nutritional properties of diets in the assessment of food system and dietary sustainability
    (Taylor and Francis Group, 2023) Dave LA; Hodgkinson SM; Roy NC; Smith NW; McNabb WC
    Advancing sustainable diets for nutrition security and sustainable development necessitates clear nutrition metrics for measuring nutritional quality of diets. Food composition, nutrient requirements, and dietary intake are among the most common nutrition metrics used in the current assessment of sustainable diets. Broadly, most studies in the area classify animal-source foods (ASF) as having a substantially higher environmental footprint in comparison to plant-source foods (PSF). As a result, much of the current dietary advice promulgates diets containing higher proportions of PSF. However, this generalization is misleading since most of these studies do not distinguish between the gross and bioavailable nutrient fractions in mixed human diets. The bioavailability of essential nutrients including β-carotene, vitamin B-12, iron, zinc, calcium, and indispensable amino acids varies greatly across different diets. The failure to consider bioavailability in sustainability measurements undermines the complementary role that ASF play in achieving nutrition security in vulnerable populations. This article critically reviews the scientific evidence on the holistic nutritional quality of diets and identifies methodological problems that exist in the way the nutritional quality of diets is measured. Finally, we discuss the importance of developing nutrient bioavailability as a requisite nutrition metric to contextualize the environmental impacts of different diets.
  • Item
    Hydrogen cross-feeders of the human gastrointestinal tract.
    (Taylor & Francis Group, 2019-01-01) Smith NW; Shorten PR; Altermann EH; Roy NC; McNabb WC
    Hydrogen plays a key role in many microbial metabolic pathways in the human gastrointestinal tract (GIT) that have an impact on human nutrition, health and wellbeing. Hydrogen is produced by many members of the GIT microbiota, and may be subsequently utilized by cross-feeding microbes for growth and in the production of larger molecules. Hydrogenotrophic microbes fall into three functional groups: sulfate-reducing bacteria, methanogenic archaea and acetogenic bacteria, which can convert hydrogen into hydrogen sulfide, methane and acetate, respectively. Despite different energy yields per molecule of hydrogen used between the functional groups, all three can coexist in the human GIT. The factors affecting the numerical balance of hydrogenotrophs in the GIT remain unconfirmed. There is increasing evidence linking both hydrogen sulfide and methane to GIT diseases such as irritable bowel syndrome, and strategies for the mitigation of such health problems through targeting of hydrogenotrophs constitute an important field for further investigation.
  • Item
    Examination of hydrogen cross-feeders using a colonic microbiota model
    (BioMed Central Ltd, 2021-12) Smith NW; Shorten PR; Altermann E; Roy NC; McNabb WC
    BACKGROUND: Hydrogen cross-feeding microbes form a functionally important subset of the human colonic microbiota. The three major hydrogenotrophic functional groups of the colon: sulphate-reducing bacteria (SRB), methanogens and reductive acetogens, have been linked to wide ranging impacts on host physiology, health and wellbeing. RESULTS: An existing mathematical model for microbial community growth and metabolism was combined with models for each of the three hydrogenotrophic functional groups. The model was further developed for application to the colonic environment via inclusion of responsive pH, host metabolite absorption and the inclusion of host mucins. Predictions of the model, using two existing metabolic parameter sets, were compared to experimental faecal culture datasets. Model accuracy varied between experiments and measured variables and was most successful in predicting the growth of high relative abundance functional groups, such as the Bacteroides, and short chain fatty acid (SCFA) production. Two versions of the colonic model were developed: one representing the colon with sequential compartments and one utilising a continuous spatial representation. When applied to the colonic environment, the model predicted pH dynamics within the ranges measured in vivo and SCFA ratios comparable to those in the literature. The continuous version of the model simulated relative abundances of microbial functional groups comparable to measured values, but predictions were sensitive to the metabolic parameter values used for each functional group. Sulphate availability was found to strongly influence hydrogenotroph activity in the continuous version of the model, correlating positively with SRB and sulphide concentration and negatively with methanogen concentration, but had no effect in the compartmentalised model version. CONCLUSIONS: Although the model predictions compared well to only some experimental measurements, the important features of the colon environment included make it a novel and useful contribution to modelling the colonic microbiota.