Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
6 results
Search Results
Item Enhanced denitrification driven by a novel iron-carbon coupled primary cell: chemical and mixotrophic denitrification(Springer, 2024-01-10) Wu R; Jeyakumar P; Nanthi B; Zhai X; Wang H; Pan M; Lian J; Cheng L; Li J; Hou M; Cui Y; Yang X; Dai KIron-carbon micro-electrolysis system is a promising method for promoting electron transfer in nitrate removal. However, many traditional approaches involving simple physical mixing inevitably suffered from the confined iron-carbon contact area and short validity period, leading to the overuse of iron. Here, a ceramsite-loaded microscale zero-valent iron (mZVI) and acidified carbon (AC) coupled-galvanic cell (CMC) was designed to support chemical, autotrophic and heterotrophic denitrification. Long-term experiments were conducted to monitor the nitrogen removal performance of denitrification reactors filled with CMC and thus optimized the denitrification performance by improving fabrication parameters and various operating conditions. The denitrification contributions test showed that the chemical denitrification pathway contributed most to nitrate removal (57.3%), followed by autotrophic (24.6%) and heterotrophic denitrification pathways (18.1%). The microbial analysis confirmed the significant aggregation of related denitrifying bacteria in the reactors, while AC promoted the expression of relevant nitrogen metabolism genes because of accelerated uptake and utilization of iron complexes. Meanwhile, the electrochemical analysis revealed a significantly improved electron transfer capacity of AC compared to pristine carbon. Overall, our study demonstrated the application of a novel mZVI-AC coupled material for effective nitrate removal and revealed the potential impact of CMC in the multipathway denitrification process. Graphical Abstract: [Figure not available: see fulltext.]Item Remediation Technologies for Neonicotinoids in Contaminated Environments: Current State and Future Prospects(Elsevier, 16/06/2023) Wei J; Wang X; Tu C; Long T; Bu Y; Wang H; Jeyakumar P; Jiang J; Deng SNeonicotinoids (NEOs) are synthetic insecticides with broad-spectrum insecticidal activity and outstanding efficacy. However, their extensive use and persistence in the environment have resulted in the accumulation and biomagnification of NEOs, posing significant risks to non-target organisms and humans. This review provides a summary of research history, advancements, and highlighted topics in NEOs remediation technologies and mechanisms. Various remediation approaches have been developed, including physiochemical, microbial, and phytoremediation, with microbial and physicochemical remediation being the most extensively studied. Recent advances in physiochemical remediation have led to the development of innovative adsorbents, photocatalysts, and optimized treatment processes. High-efficiency degrading strains with well-characterized metabolic pathways have been successfully isolated and cultured for microbial remediation, while many plant species have shown great potential for phytoremediation. However, significant challenges and gaps remain in this field. Future research should prioritize isolating, domesticating or engineering high efficiency, broad-spectrum microbial strains for NEO degradation, as well as developing synergistic remediation techniques to enhance removal efficiency on multiple NEOs with varying concentrations in different environmental media. Furthermore, a shift from pipe-end treatment to pollution prevention strategies is needed, including the development of green and economically efficient alternatives such as biological insecticides. Integrated remediation technologies and case-specific strategies that can be applied to practical remediation projects need to be developed, along with clarifying NEO degradation mechanisms to improve remediation efficiency. The successful implementation of these strategies will help reduce the negative impact of NEOs on the environment and human health.Item Supplying silicon alters microbial community and reduces soil cadmium bioavailability to promote health wheat growth and yield(Elsevier, 30/06/2021) Song A; Li Z; Wang E; Xu D; Wang S; Bi J; Wang H; Jeyakumar P; Li Z; Fan FSoil amendments of black bone (BB), biochar (BC), silicon fertilizer (SI), and leaf fertilizer (LF) play vital roles in decreasing cadmium (Cd) availability, thereby supporting healthy plant growth and food security in agroecosystems. However, the effect of their additions on soil microbial community and the resulting soil Cd bioavailability, plant Cd uptake and health growth are still unknown. Therefore, in this study, BB, BC, SI, and LF were selected to evaluate Cd amelioration in wheat grown in Cd-contaminated soils. The results showed that relative to the control, all amendments significantly decreased both soil Cd bioavailability and its uptake in plant tissues, promoting healthy wheat growth and yield. This induced-decrease effect in seeds was the most obvious, wherein the effect was the highest in SI (52.54%), followed by LF (43.31%), and lowest in BC (35.24%) and BB (31.98%). Moreover, the induced decrease in soil Cd bioavailability was the highest in SI (29.56%), followed by BC (28.85%), lowest in LF (17.55%), and BB (15.30%). The significant effect in SI likely resulted from a significant increase in both the soil bioavailable Si and microbial community (Acidobacteria and Thaumarchaeota), which significantly decreased soil Cd bioavailability towards plant roots. In particular, a co-occurrence network analysis indicated that soil microbes played a substantial role in rice yield under Si amendment. Therefore, supplying Si alters the soil microbial community, positively and significantly interacting with soil bioavailable Si and decreasing Cd bioavailability in soils, thereby sustaining healthy crop development and food quality.Item Responses of rice (Oryza sativa L.) plant growth, grain yield and quality, and soil properties to the microplastic occurrence in paddy soil(Springer, 18/05/2022) Chen S; Feng Y; Han L; Li D; Feng Y; Jeyakumar P; Sun H; Shi W; Wang HPurpose: Agricultural soil has been recognized as a major sink of microplastic, an emerging pollutant to environmental biodiversity and ecosystem. However, the impacts of microplastic on soil–plant systems (e.g., crop growth, grain yield and amino acid content, nitrogen uptake capacity, and soil properties) remain largely unknown. Methods: Four typical microplastics, i.e., polythene (PE, 200 μm), polyacrylonitrile (PAN, 200 μm), and polyethylene terephthalate (PET) in diameter of 200 μm and 10 μm (PET200 and PET10), were tested to assess the consequent aforementioned responses under rice (Oryza sativa L.) paddy soil in a mesocosm experiment. Results: Microplastics multiply influenced the soil pH, NH4+-N and NO3−-N contents, which effects were depended on the rice growth stage and plastic type. Overall, microplastics significantly decreased the soil urease activity by 5.0–12.2% (P < 0.05). When exposed to PAN and PET (in both diameter of 200 μm and 10 μm), there were significantly 22.2–30.8% more grain yield produced, compared to the control (P < 0.05), which was attributing to the higher nitrogen uptake capacity of rice grain. Meanwhile, microplastics exhibited nominal influences on rice plant height, tillering number, leaf SPAD, and NDVI. The amino acids were affected by microplastic, depending on the types of plastics and amino acids. Conclusion: This study provides evidence that microplastic can affect the development and final grain yield, amino acid content, nitrogen uptake capacity of rice, and some major soil properties, while these effects vary as a function of plastic type. Our findings highlight the positive impacts that could occur when the presence of microplastics in paddy soil.Item Crawfish shell- and Chinese banyan branch-derived biochars reduced phytoavailability of As and Pb and altered community composition of bacteria in a contaminated arable soil.(20/03/2023) Gu S; Yang X; Chen H; Jeyakumar P; Chen J; Wang HGlobally, soil contamination with arsenic (As) and lead (Pb) has become a severe environmental issue. Herein, a pot experiment was conducted using pak choi (Brassica chinensis L.) to investigate the effects of biochars derived from crawfish (Procambarus clarkia) shells (CSB) and Chinese banyan (Ficus microcarpa) branches (CBB) on the phytoavailability of As and Pb, and bacterial community composition in soils. Our results showed that the application of CSB and CBB decreased the concentrations of DTPA-extractable Pb in soils ranging from 26.8 % to 28.8 %, whereas CSB increased the concentration of NH4H2PO4-extractable As in soils, compared to the control. Application of both biochars reduced the uptake of As and Pb in the edible part of pak choi. In addition, application of CBB significantly (P < 0.05) increased the activities of α-glucosidase, β-glucosidase, cellobiohydrolase, and acid phosphomonoesterase by 55.0 %, 54.4 %, 195.1 %, and 76.7 %, respectively, compared to the control. High-throughput sequencing analysis revealed that the predominant bacteria at the phyla level in both biochar-treated soils were Firmicutes, Proteobacteria, and Actinobacteriota. Redundancy and correlation analyses showed that the changes in bacterial community composition could be related to soil organic carbon content, As availability, and nutrient availability in soils. Overall, the Chinese banyan branch biochar was more suitable than the crawfish shell biochar as a potential amendment for the remediation of soils co-contaminated with As and Pb.Item Enhanced removal of arsenic and cadmium from contaminated soils using a soluble humic substance coupled with chemical reductant.(1/03/2023) Wei J; Tu C; Xia F; Yang L; Chen Q; Chen Y; Deng S; Yuan G; Wang H; Jeyakumar P; Bhatnagar ASoil washing is an efficient, economical, and green remediation technology for removing several heavy metal (loid)s from contaminated industrial sites. The extraction of green and efficient washing agents from low-cost feedback is crucially important. In this study, a soluble humic substance (HS) extracted from leonardite was first tested to wash soils (red soil, fluvo-aquic soil, and black soil) heavily contaminated with arsenic (As) and cadmium (Cd). A D-optimal mixture design was investigated to optimize the washing parameters. The optimum removal efficiencies of As and Cd by single HS washing were found to be 52.58%-60.20% and 58.52%-86.69%, respectively. Furthermore, a two-step sequential washing with chemical reductant NH2OH•HCl coupled with HS (NH2OH•HCl + HS) was performed to improve the removal efficiency of As and Cd. The two-step sequential washing significantly enhanced the removal of As and Cd to 75.25%-81.53% and 64.53%-97.64%, which makes the residual As and Cd in soil below the risk control standards for construction land. The two-step sequential washing also effectively controlled the mobility and bioavailability of residual As and Cd. However, the activities of soil catalase and urease significantly decreased after the NH2OH•HCl + HS washing. Follow-up measures such as soil neutralization could be applied to relieve and restore the soil enzyme activity. In general, the two-step sequential soil washing with NH2OH•HCl + HS is a fast and efficient method for simultaneously removing high content of As and Cd from contaminated soils.

