Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item Genome-Wide Analysis of the SRPP/REF Gene Family in Taraxacum kok-saghyz Provides Insights into Its Expression Patterns in Response to Ethylene and Methyl Jasmonate Treatments.(MDPI (Basel, Switzerland), 2024-07-07) He H; Wang J; Meng Z; Dijkwel PP; Du P; Shi S; Dong Y; Li H; Xie Q; Pollmann STaraxacum kok-saghyz (TKS) is a model plant and a potential rubber-producing crop for the study of natural rubber (NR) biosynthesis. The precise analysis of the NR biosynthesis mechanism is an important theoretical basis for improving rubber yield. The small rubber particle protein (SRPP) and rubber elongation factor (REF) are located in the membrane of rubber particles and play crucial roles in rubber biosynthesis. However, the specific functions of the SRPP/REF gene family in the rubber biosynthesis mechanism have not been fully resolved. In this study, we performed a genome-wide identification of the 10 TkSRPP and 2 TkREF genes' family members of Russian dandelion and a comprehensive investigation on the evolution of the ethylene/methyl jasmonate-induced expression of the SRPP/REF gene family in TKS. Based on phylogenetic analysis, 12 TkSRPP/REFs proteins were divided into five subclades. Our study revealed one functional domain and 10 motifs in these proteins. The SRPP/REF protein sequences all contain typical REF structural domains and belong to the same superfamily. Members of this family are most closely related to the orthologous species T. mongolicum and share the same distribution pattern of SRPP/REF genes in T. mongolicum and L. sativa, both of which belong to the family Asteraceae. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the TkSRPP/REFs gene family. The expression levels of most TkSRPP/REF members were significantly increased in different tissues of T. kok-saghyz after induction with ethylene and methyl jasmonate. These results will provide a theoretical basis for the selection of candidate genes for the molecular breeding of T. kok-saghyz and the precise resolution of the mechanism of natural rubber production.Item Genome-Wide Analysis of BBX Gene Family in Three Medicago Species Provides Insights into Expression Patterns under Hormonal and Salt Stresses.(MDPI (Basel, Switzerland), 2024-05-26) Wang J; Meng Z; He H; Du P; Dijkwel PP; Shi S; Li H; Xie Q; Igamberdiev AUBBX protein is a class of zinc finger transcription factors that have B-box domains at the N-terminus, and some of these proteins contain a CCT domain at the C-terminus. It plays an important role in plant growth, development, and metabolism. However, the expression pattern of BBX genes in alfalfa under hormonal and salt stresses is still unclear. In this study, we identified a total of 125 BBX gene family members by the available Medicago reference genome in diploid alfalfa (Medicago sativa spp. Caerulea), a model plant (M. truncatula), and tetraploid alfalfa (M. sativa), and divided these members into five subfamilies. We found that the conserved motifs of BBXs of the same subfamily reveal similarities. We analyzed the collinearity relationship and duplication mode of these BBX genes and found that the expression pattern of BBX genes is specific in different tissues. Analysis of the available transcriptome data suggests that some members of the BBX gene family are involved in multiple abiotic stress responses, and the highly expressed genes are often clustered together. Furthermore, we identified different expression patterns of some BBX genes under salt, ethylene, salt and ethylene, salicylic acid, and salt and salicylic acid treatments, verified by qRT-PCR, and analyzed the subcellular localization of MsBBX2, MsBBX17, and MsBBX32 using transient expression in tobacco. The results showed that BBX genes were localized in the nucleus. This study systematically analyzed the BBX gene family in Medicago plants, which provides a basis for the study of BBX gene family tolerance to abiotic stresses.Item Recurrent horizontal transfer identifies mitochondrial positive selection in a transmissible cancer.(Springer Nature Limited, 2020-06-16) Strakova A; Nicholls TJ; Baez-Ortega A; Ní Leathlobhair M; Sampson AT; Hughes K; Bolton IAG; Gori K; Wang J; Airikkala-Otter I; Allen JL; Allum KM; Arnold CL; Bansse-Issa L; Bhutia TN; Bisson JL; Blank K; Briceño C; Castillo Domracheva A; Corrigan AM; Cran HR; Crawford JT; Cutter SM; Davis E; de Castro KF; De Nardi AB; de Vos AP; Delgadillo Keenan L; Donelan EM; Espinoza Huerta AR; Faramade IA; Fazil M; Fotopoulou E; Fruean SN; Gallardo-Arrieta F; Glebova O; Gouletsou PG; Häfelin Manrique RF; Henriques JJGP; Horta RS; Ignatenko N; Kane Y; King C; Koenig D; Krupa A; Kruzeniski SJ; Lanza-Perea M; Lazyan M; Lopez Quintana AM; Losfelt T; Marino G; Martínez Castañeda S; Martínez-López MF; Masuruli BM; Meyer M; Migneco EJ; Nakanwagi B; Neal KB; Neunzig W; Nixon SJ; Ortega-Pacheco A; Pedraza-Ordoñez F; Peleteiro MC; Polak K; Pye RJ; Ramirez-Ante JC; Reece JF; Rojas Gutierrez J; Sadia H; Schmeling SK; Shamanova O; Sherlock AG; Steenland-Smit AE; Svitich A; Tapia Martínez LJ; Thoya Ngoka I; Torres CG; Tudor EM; van der Wel MG; Vițălaru BA; Vural SA; Walkinton O; Wehrle-Martinez AS; Widdowson SAE; Zvarich I; Chinnery PF; Falkenberg M; Gustafsson CM; Murchison EPAutonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for 'selfish' traits, such as replicative advantage. However, few cases of this phenomenon arising within natural populations have been described. Here, we survey the frequency of mtDNA horizontal transfer within the canine transmissible venereal tumour (CTVT), a contagious cancer clone that occasionally acquires mtDNA from its hosts. Remarkably, one canine mtDNA haplotype, A1d1a, has repeatedly and recently colonised CTVT cells, recurrently replacing incumbent CTVT haplotypes. An A1d1a control region polymorphism predicted to influence transcription is fixed in the products of an A1d1a recombination event and occurs somatically on other CTVT mtDNA backgrounds. We present a model whereby 'selfish' positive selection acting on a regulatory variant drives repeated fixation of A1d1a within CTVT cells.Item Obligate mutualism within a host drives the extreme specialization of a fig wasp genome(BioMed Central Ltd, 20/12/2013) Xiao J-H; Yue Z; Jia L-Y; Yang X-H; Niu L-H; Wang Z; Zhang P; Sun B-F; He S-M; Li Z; Xiong T-L; Xin W; Gu H-F; Wang B; Werren JH; Murphy RW; Wheeler D; Niu L-M; Ma G-C; Tang T; Bian S-N; Wang N-X; Yang C-Y; Wang N; Fu Y-G; Li W-Z; Yi SV; Yang X-Y; Zhou Q; Lu C-X; Xu C-Y; He L-J; Yu L-L; Chen M; Zheng Y; Wang S-W; Zhao S; Li Y-H; Yu Y-Y; Qian X-J; Cai Y; Bian L-L; Zhang S; Wang J-Y; Yin Y; Xiao H; Wang G-H; Yu H; Wu W-S; Cook JM; Wang J; Huang D-WBackground: Fig pollinating wasps form obligate symbioses with their fig hosts. This mutualism arose approximately 75 million years ago. Unlike many other intimate symbioses, which involve vertical transmission of symbionts to host offspring, female fig wasps fly great distances to transfer horizontally between hosts. In contrast, male wasps are wingless and cannot disperse. Symbionts that keep intimate contact with their hosts often show genome reduction, but it is not clear if the wide dispersal of female fig wasps will counteract this general tendency. We sequenced the genome of the fig wasp Ceratosolen solmsi to address this question. Results: The genome size of the fig wasp C. solmsi is typical of insects, but has undergone dramatic reductions of gene families involved in environmental sensing and detoxification. The streamlined chemosensory ability reflects the overwhelming importance of females finding trees of their only host species, Ficus hispida, during their fleeting adult lives. Despite long-distance dispersal, little need exists for detoxification or environmental protection because fig wasps spend nearly all of their lives inside a largely benign host. Analyses of transcriptomes in females and males at four key life stages reveal that the extreme anatomical sexual dimorphism of fig wasps may result from a strong bias in sex-differential gene expression. Conclusions: Our comparison of the C. solmsi genome with other insects provides new insights into the evolution of obligate mutualism. The draft genome of the fig wasp, and transcriptomic comparisons between both sexes at four different life stages, provide insights into the molecular basis for the extreme anatomical sexual dimorphism of this species. © 2013 Xiao et al.; licensee BioMed Central Ltd.
