Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Impact of Ultrasound Emulsification on the Physicochemical Properties of Emulsions Stabilised by Quinoa Protein Isolates at Different pHs
    (Springer Science+Business Media, LLC, 2024-03) Yang Z; Cheng L
    Ultrasonication (20 kHz, 19.9 W/10 mL sample) was used to form O/W emulsions stabilised by quinoa protein isolate (QPI) particles at 3 wt%. Effects of pH (3, 5, 7, 9) and oil volume fractions (20%, 40%, and 60%) on rheological properties and microstructural characteristics of emulsions were investigated. All emulsions show viscoelastic behaviours and form a network structure comprising aggregated oil droplets and QPI particles. Emulsions stabilised by QPI at pH 5 showed largest droplet sizes and lowest gel strength due to extensive aggregation of proteins around the isoelectric point (pI ~ 4.5). The gel strength (G´(1 Hz)) were enhanced when the oil volume fraction increased and reached ~ 1100–1350 Pa at 60% oil volume fraction at different pH. This could be attributed to a tighter packing of oil droplets at 60% oil. Confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) revealed that interdroplets bridging and voids filling of QPI particles between oil droplets are critical in formation of aggregated emulsions network. Emulsions stabilised by QPI at pH 7 and 9 possessed thinner interfacial layers compared to those at pH 3 and 5. Finally, this study shows a potential of using ultrasonication to prepare gel-like emulsions stabilised by QPI, broadening applications of quinoa proteins in making dairy substitutes with semi-solid textural characteristics.
  • Item
    Formation and properties of highly concentrated oil-in-water emulsions stabilized by emulsion droplets
    (Elsevier Ltd, 2023-12) Cheng L; Ye A; Yang Z; Hemar Y; Singh H
    70% (v/v) concentrated emulsion has been prepared using Ca2+-cross-linked sodium caseinate particles (Ca-CAS) or Ca-CAS coated nano-sized primary emulsion droplets as emulsifiers. The primary droplet-stabilised emulsion (DSE) was compared with the conventional Ca-CAS stabilised-emulsion (PSE) in terms of viscoelasticity as affected by aging (30 days) and heating (80 °C, 30 min) at pH 5.8 and 7.0. DSE at pH 5.8 showed the highest complex modulus (G* = 1174 ± 39 Pa), approximately was six-times higher than other emulsions (G* ≤ ∼250 Pa) due to the thick emulsifier layer consisting of primary droplet increasing the effective volume faction of core droplets by a factor of ∼1.21. After aging, G* of DSE at pH 5.8 increased to 1685 ± 68 Pa, while G* of other three emulsions were ∼400 Pa. After heating, G* of DSE reached 1801 ± 69 Pa and 1312 ± 205 Pa at pH 5.8 and pH 7.0, respectively, while G* of PSE were ∼600 Pa at both pHs. The possible mechanism for aging-induced gelation was the gravity-driven microphase separation, in which the droplets flocculate together with the entrapped aqueous phase increasing the effective volume fraction. The heat-induced gelation was attributed to the increase in droplet interactions through protein aggregates and/or primary droplets forming three-dimensional networks at elevated temperature. This study suggests that the mechanical strength of food-grade concentrated emulsions can be effectively improved using nano-sized primary emulsions as emulsifying agent and can be further modulated by aging or