Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
3 results
Search Results
Item A novel decision support framework for building refurbishment towards zero carbon emissions(Elsevier Ltd, 2025-11-15) Bui TTP; Wilkinson S; Domingo N; MacGregor CThe refurbishment of existing buildings is vital to maximise carbon emissions reduction and alleviate the impacts of climate change. While various decision support frameworks for building refurbishment exist. There is a notable gap in the availability of comprehensive frameworks that combine diverse methods, tools, and systems to support decision-making aimed at reducing whole-of-life carbon emissions. This paper brings together the development and validation processes of a novel early-stage decision support framework for building refurbishment towards zero carbon emissions in New Zealand (RefurbZC). The development of the framework was based on the critical analysis and interpretation of the literature review, preliminary study, and case study of university buildings in New Zealand, which integrate international best practices adopted to the local context and lessons learnt from real-life case studies. The framework was validated and refined using a focus group workshop with New Zealand building experts involved in the refurbishment process. The new RefurbZC provides a better detailed guideline to use in the early stages of the refurbishment process, focusing on maximising whole-of-life carbon reduction. It helps to understand the refurbishment decision-making process, identify areas for integrating carbon-reduction initiatives, determine key factors and actors in driving carbon-reduction solutions, and promote stakeholder collaboration and integration in carbon-reduction building refurbishment. The presented framework contributes extensively to theoretical and practical knowledge of building refurbishment towards zero carbon emissions and offers a basis and foundation for future work in this research area.Item Policy implications of time-differentiated climate change analysis in life cycle assessment of building elements in Aotearoa New Zealand(Springer-Verlag GmbH, 2025-03-21) McLaren SJ; Elliot T; Dowdell D; Wakelin S; Kouchaki-Penchah H; Levasseur A; Hoxha EPurpose: Climate change policies are increasingly including time-dependent carbon targets for different economic activities. However, current standards and guidelines for climate change assessment of buildings ignore these dynamic aspects and require use of static life cycle assessment (LCA). This research investigates how to better account for the timing of greenhouse gas (GHG) emissions and removals in LCAs of buildings and construction products, using a static and dynamic LCA case study of roofs, walls and floors in Aotearoa New Zealand residential dwellings. Methods: Static and dynamic LCA methods were used to assess the climate change impact of two assemblies each for external walls, ground floors and roofs used in stand-alone residential dwellings in Aotearoa New Zealand. Each assembly was modelled for a life cycle extending from material production, through to element construction, operational use, and final end-of-life treatment. Results were calculated as total GWP100 results for each life cycle stage, GWP100 results disaggregated into time periods, and as instantaneous and cumulative radiative forcing up to year 190. Sensitivity analysis was undertaken for the building reference service life, exposure zone, location, and end-of-life treatment. Results and discussion: Four time-related aspects were found to be particularly significant as regards their contribution to the final static LCA (sLCA) climate change results: -Inclusion versus exclusion of biogenic carbon storage in landfill -Modelling of end-of-life recycling activities using current versus future low or net zero carbon technologies (in module D) -Building reference service life (50 versus 90 years) -Choice of modelling parameters for landfilled timber and engineered wood products. Use of dynamic LCA (dLCA) enabled priorities to be identified for climate change mitigation actions in the shorter and longer term, and showed that half of the assemblies achieved net zero carbon by year 190 (timber wall, steel wall, timber floor). Conclusions: Timing of GHG emissions and removals should be included in LCAs to support decision-making in the context of achieving targets set in climate change policies. In particular, LCA results should show ongoing biogenic carbon storage in landfilled timber and engineered wood products. Carbon footprint standards, guidelines and calculation tools should be prescriptive about building and construction product reference service lives, the EofL fate for different materials/products, and modelling of forestry and landfill activities, to provide a level playing field for stakeholders.Item Decision making in reducing carbon emissions for building refurbishment: Case studies of university buildings in New Zealand(Elsevier B.V., 2023-07-05) Bui PTP; Wilkinson S; MacGregor C; Domingo NThe refurbishment of existing buildings offers the greatest opportunity to maximise carbon reduction within the built environment. Although the conceptual framework of the refurbishment process incorporating various methods, tools, and systems to support decision making in reducing whole-of-life carbon emissions exists in the literature, empirical research reporting on how and why the decisions are made in current industry practice is lacking. This paper aims to address this knowledge gap by investigating the decision-making process of building refurbishment considering whole-of-life carbon reduction using three real-life case studies that incorporate decarbonisation decisions. The important findings emerged from an interactive analysis between theoretical propositions and cross-case synthesis. The study sheds a new insight into (1) the effective adoption of building rating systems, (2) the required whole-of-life carbon reduction targets, (3) the importance of establishing a dedicated financial budget for carbon-reduction refurbishment solutions, (4) the need for adaptable refurbishment designs and long-term strategies, (5) holistic design reports, (6) the promotion of early contractor involvement (ECI) approach, (7) government funding and incentives, and (8) the availability of supply chains and data. The originality of the paper is providing a new understanding of the decision-making practices and challenges faced in the refurbishment process, in which lessons learnt for improving the implementation of building refurbishment towards zero carbon are recommended. The research expands theoretical knowledge and practical experience in whole-of-life carbon analysis and performance estimation for building refurbishment. The insights gained from this study offer practitioners and researchers a streamlined interdisciplinary guide to better deliver refurbishment projects towards zero carbon.
