Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 9 of 9
  • Item
    Artificial Intelligence-Enabled DDoS Detection for Blockchain-Based Smart Transport Systems.
    (MDPI (Basel, Switzerland), 2021-12-22) Liu T; Sabrina F; Jang-Jaccard J; Xu W; Wei Y
    A smart public transport system is expected to be an integral part of our human lives to improve our mobility and reduce the effect of our carbon footprint. The safety and ongoing maintenance of the smart public transport system from cyberattacks are vitally important. To provide more comprehensive protection against potential cyberattacks, we propose a novel approach that combines blockchain technology and a deep learning method that can better protect the smart public transport system. By the creation of signed and verified blockchain blocks and chaining of hashed blocks, the blockchain in our proposal can withstand unauthorized integrity attack that tries to forge sensitive transport maintenance data and transactions associated with it. A hybrid deep learning-based method, which combines autoencoder (AE) and multi-layer perceptron (MLP), in our proposal can effectively detect distributed denial of service (DDoS) attempts that can halt or block the urgent and critical exchange of transport maintenance data across the stakeholders. The experimental results of the hybrid deep learning evaluated on three different datasets (i.e., CICDDoS2019, CIC-IDS2017, and BoT-IoT) show that our deep learning model is effective to detect a wide range of DDoS attacks achieving more than 95% F1-score across all three datasets in average. The comparison of our approach with other similar methods confirms that our approach covers a more comprehensive range of security properties for the smart public transport system.
  • Item
    Sensors and Instruments for Brix Measurement: A Review
    (MDPI AG, 16/03/2022) Jaywant SA; Singh H; Arif KM
    Quality assessment of fruits, vegetables, or beverages involves classifying the products according to the quality traits such as, appearance, texture, flavor, sugar content. The measurement of sugar content, or Brix, as it is commonly known, is an essential part of the quality analysis of the agricultural products and alcoholic beverages. The Brix monitoring of fruit and vegetables by destructive methods includes sensory assessment involving sensory panels, instruments such as refractometer, hydrometer, and liquid chromatography. However, these techniques are manual, time-consuming, and most importantly, the fruits or vegetables are damaged during testing. On the other hand, the traditional sample-based methods involve manual sample collection of the liquid from the tank in fruit/vegetable juice making and in wineries or breweries. Labour ineffectiveness can be a significant drawback of such methods. This review presents recent developments in different destructive and nondestructive Brix measurement techniques focused on fruits, vegetables, and beverages. It is concluded that while there exist a variety of methods and instruments for Brix measurement, traits such as promptness and low cost of analysis, minimal sample preparation, and environmental friendliness are still among the prime requirements of the industry.
  • Item
    Novel adaptive transmission protocol for mobile sensors that improves energy efficiency and removes the limitation of state based adaptive power control protocol (SAPC)
    (MDPI AG, 15/03/2017) Basu D; Sen Gupta G; Moretti G; Gui X
    In this paper, we have presented a novel transmission protocol which is suited for battery-powered sensors that are worn by a patient when under medical treatment, and allow constant monitoring of health indices. These body-wearable sensors log data from the patient and transmit the data to a base-station or gateway, via a wireless link at specific intervals. The signal link quality varies because the distance between the patient and the gateway is not fixed. This may lead to packet drops that increase the energy consumption due to repeated retransmission. The proposed novel transmission power control protocol combines a state based adaptive power control (SAPC) algorithm and an intelligent adaptive drop-off algorithm, to track the changes in the link quality, in order to maintain an acceptable Packet success rate (PSR)(~99%). This removes the limitation of the SAPC by making the drop-off rate adaptive. Simulations were conducted to emulate a subject’s movement in different physical scenarios—an indoor office environment and an outdoor running track. The simulation results were validated through experiments in which the transmitter, together with the sensor mounted on the subject, and the subject themselves were made to move freely within the communicable range. Results showed that the proposed protocol performs at par with the best performing SAPC corresponding to a fixed drop-off rate value.
  • Item
    Modular neural network modelling for long-range prediction of an evaporator
    (2000) Russell NT; Bakker HH; Chaplin RI
    This paper presents the development of a modular neural network model of a three-effect, falling-film evaporator. The model comprises a number of sub-networks each modelling a specific element of the overall system. The modular structure was employed in order to provide benefits in terms of improved model training and performance. The performance of the modular neural model is demonstrated for long-range prediction by comparing it with process data, an analytical simulation and a linear ARX model. The results show that the modular neural model can satisfactorily predict over a horizon of arbitrary length and is suited for implementation within a predictive control scheme. Benefits in terms of model flexibility and interpretability are also discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.
  • Item
    An Integrated Wind and Hydro Power System Using Switched Reluctance Generators
    (Scientific Research Publishing Inc, 9/02/2018) Al-Bahadly I
    This research work seeks to make renewable energy more reliable, cost effective, and accessible by exploring a different energy combination system to that currently applied to wind and hydro power. Instead of the usual electrical combination of wind and hydro generators, this work involved combining a water and wind turbine mechanically, before driving an electrical generator. This new combination system was modeled and optimized in MATLAB, using a direct combination system commonly found in multi-engine helicopters. The system was found to operate satisfactorily, however it is mechanically more complex than current electrical combining systems. Research was undertaken regarding wind and water resource availability, and the turbines were chosen with these taken into consideration. Various combination systems were explored, including torque and speed split mechanical combinations, conventional electrical combination, and using a modified switched reluctance generator as a method of electro-mechanical combination. The generator selected for this work is a three phase 12/8 Switched Reluctance (SR) machine. A detailed winding polarity having four poles per phase and their effect on the performance of the machine is observed.
  • Item
    Portable Multi-Inputs Renewable Energy System for Small Scale Remote Application
    (Scientific Research Publishing Inc, 14/02/2018) Al-Bahadly I
    This paper presents a potable renewable energy system. The portable renewable energy power unit is designed from a need. The need is for first response teams in remote natural disaster situations to have a reliable source of energy to power a small vaccine refrigerator or water purification system and a basic satellite communication system. It is important that such a need is explored as a practical solution has the potential to save the lives of people in remote areas, who would otherwise suffer from a lack of humanitarian aid. Currently diesel generators are the primary source of electricity generation for disaster responders and in most situations work very well and provide a sufficient amount of electricity to meet the power needs. However, in remote areas road infrastructure is often damaged. In this type of situation getting a constant supply of diesel to the area is an expensive or impractical operation. This is where the portable renewable energy power unit bridges the gap and allows a more practical solution to be implemented. The specific aim of the work is to design a compact, stand-alone, product that can be easily transported by people across uneven terrain. It can generate power from wind, solar and hydro energy sources. In this work a new non-isolated multiport DC-DC converter topology for a hybrid energy system in low power applications is proposed. The new topology assimilates multiple renewable energy sources and power up multiple loads with different output levels. A complete Solid works model and FEA analysis, on required components, is completed. The scope of the work encompasses both the electrical and mechanical design of the system.
  • Item
    Enhancement of Wind Energy Conversion Using Axial Flux Generator
    (Scientific Research Publishing Inc, 25/02/2019) Al-Bahadly I; Neppalli SC
    This paper investigates the application of the axial flux machine (AFM) to the wind energy conversion systems (WECS) to obtain high power and torque at reduced cost. By developing mathematical equations using the phase and active transformations, the three-phase model is transformed to two-phase equations by making both the stator and rotor as reference frames, finally converting to arbitrary reference frame, which is useful for the modelling of the axial flux machine. The torque, current, and voltage equations are expressed to improve the simulation reliability. Based on the developed equations, the mathematical model for the axial flux machine is developed using the MATLAB/Simulink. Starting with the axial flux motor model, when the load on the motor increases, how the parameters like torque, current, and speed of the motor vary are explored in this paper. Then for the axial flux generator model, when the wind speed exceeds the rated speed how the torque, line voltages, currents, power and speed of the generator behave are investigated and presented in this paper. The developed model in this paper could be extended to a twin-rotor axial flux synchronous machine, which will lead to the development of more efficient WECS.
  • Item
    Low-Cost Sensor for Continuous Measurement of Brix in Liquids
    (MDPI AG, 25/11/2022) Jaywant SA; Singh H; Arif K
    This paper presents a Brix sensor based on the differential pressure measurement principle. Two piezoresistive silicon pressure sensors were applied to measure the specific gravity of the liquid, which was used to calculate the Brix level. The pressure sensors were mounted inside custom-built water-tight housings connected together by fixed length metallic tubes containing the power and signal cables. Two designs of the sensor were prepared; one for the basic laboratory testing and validation of the proposed system and the other for a fermentation experiment. For lab tests, a sugar solution with different Brix levels was used and readings from the proposed sensor were compared with a commercially available hydrometer called Tilt. During the fermentation experiments, fermentation was carried out in a 1000 L tank over 7 days and data was recorded and analysed. In the lab experiments, a good linear relationship between the sugar content and the corresponding Brix levels was observed. In the fermentation experiment, the sensor performed as expected but some problems such as residue build up were encountered. Overall, the proposed sensing solution carries a great potential for continuous monitoring of the Brix level in liquids. Due to the usage of low-cost pressure sensors and the interface electronics, the cost of the system is considered suitable for large scale deployment at wineries or juice processing industries.
  • Item
    A 0.8 V 0.23 nW 1.5 ns full-swing pass-transistor XOR gate in 130 nm CMOS
    (Hindawi Publishing Corporation, 2013-03) Ahmad N; Hasan SMREZAUL
    A power efficient circuit topology is proposed to implement a low-voltage CMOS 2-input pass-transistor XOR gate. This design aims to minimize power dissipation and reduce transistor count while at the same time reducing the propagation delay. The XOR gate utilizes six transistors to achieve a compact circuit design and was fabricated using the 130 nm IBM CMOS process. The performance of the XOR circuit was validated against other XOR gate designs through simulations using the same 130 nm CMOS process. The area of the core circuit is only about 56 sq · µm with 1.5659 ns propagation delay and 0.2312 nW power dissipation at 0.8 V supply voltage. The proposed six-transistor implementation thus compares favorably with other existing XOR gate designs.