Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Bovine viral diarrhoea viruses from New Zealand belong predominantly to the BVDV-1a genotype.(Taylor and Francis Group, 2024-03-01) Dunowska M; Lal R; Dissanayake SD; Bond SD; Burrows E; Moffat J; Howe LAIM: To determine which genotypes of bovine viral diarrhoea virus (BVDV) circulate among cattle in New Zealand. METHODS: Samples comprised BVDV-1-positive sera sourced from submissions to veterinary diagnostic laboratories in 2019 (n = 25), 2020 (n = 59) and 2022 (n = 74) from both beef and dairy herds, as well as archival BVDV-1 isolates (n = 5). Fragments of the 5' untranslated region (5' UTR) and glycoprotein E2 coding sequence of the BVDV genome were amplified and sequenced. The sequences were aligned to each other and to international BVDV-1 sequences to determine their similarities and phylogenetic relationships. The 5' UTR sequences were also used to create genetic haplotype networks to determine if they were correlated with selected traits (location, type of farm, and year of collection). RESULTS: The 5' UTR sequences from New Zealand BVDV were closely related to each other, with pairwise identities between 89% and 100%. All clustered together and were designated as BVDV-1a (n = 144) or BVDV-1c (n = 5). There was no evidence of a correlation between the 5' UTR sequence and the geographical origin within the country, year of collection or the type of farm. Partial E2 sequences from New Zealand BVDV (n = 76) showed 74-100% identity to each other and clustered in two main groups. The subtype assignment based on the E2 sequence was the same as based on the 5' UTR analysis. This is the first comprehensive analysis of genomic variability of contemporary New Zealand BVDV based on the analysis of the non-coding (5' UTR) and coding (E2) sequences. CONCLUSIONS AND CLINICAL RELEVANCE: Knowledge of the diversity of the viruses circulating in the country is a prerequisite for the development of effective control strategies, including a selection of suitable vaccines. The data presented suggest that New Zealand BVDV are relatively homogeneous, which should facilitate eradication efforts including selection or development of the most suitable vaccines.Item Efficiency of the synthetic self-splicing RiboJ ribozyme is robust to cis- and trans-changes in genetic background(John Wiley and Sons, Ltd, 2021-08-24) Vlková M; Morampalli BR; Silander OKThe expanding knowledge of the variety of synthetic genetic elements has enabled the construction of new and more efficient genetic circuits and yielded novel insights into molecular mechanisms. However, context dependence, in which interactions between cis- or trans-genetic elements affect the behavior of these elements, can reduce their general applicability or predictability. Genetic insulators, which mitigate unintended context-dependent cis-interactions, have been used to address this issue. One of the most commonly used genetic insulators is a self-splicing ribozyme called RiboJ, which can be used to decouple upstream 5' UTR in mRNA from downstream sequences (e.g., open reading frames). Despite its general use as an insulator, there has been no systematic study quantifying the efficiency of RiboJ splicing or whether this autocatalytic activity is robust to trans- and cis-genetic context. Here, we determine the robustness of RiboJ splicing in the genetic context of six widely divergent E. coli strains. We also check for possible cis-effects by assessing two SNP versions close to the catalytic site of RiboJ. We show that mRNA molecules containing RiboJ are rapidly spliced even during rapid exponential growth and high levels of gene expression, with a mean efficiency of 98%. We also show that neither the cis- nor trans-genetic context has a significant impact on RiboJ activity, suggesting this element is robust to both cis- and trans-genetic changes.
