Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
5 results
Search Results
Item Bioaccessibility and associated concepts: Terminology in the context of in vitro food digestion studies(Elsevier Ltd, 2025-09-01) Grundy MM-L; Deglaire A; Le Feunteun S; Reboul E; Moughan PJ; Wilde PJ; McClements DJ; Marze SIn vitro gastrointestinal models are widely used to study food digestion, in combination with analytical methods to determine the physicochemical and biochemical fate of food compounds. The in vitro bioaccessibility determined with these models is often used as an indicator of the in vivo bioavailability. However, the bioaccessibility concept is not used consistently within the scientific literature, leading to confusion and making it difficult to compare the results from different studies. The aim of this article is to provide standardized definitions of in vitro digestibility and bioaccessibility, detailing the main processes involved, including physical release, solubilization, and biochemical/metabolic reactions. The terminology of complementary cellular, ex vivo, and animal/human in vivo experiments is also given. Application of the in vitro terminology to different nutrients is discussed, including lipids, proteins, carbohydrates, vitamins, and other bioactive compounds. The proposed definitions unify most concepts related to the gastrointestinal fate of ingested food compounds.Item Effect of age on the standardized ileal amino acid digestibility of soybean meal and canola meal in broilers(Elsevier B.V. on behalf of KeAi Communications Co., Ltd., 2023-12-02) Barua M; Abdollahi MR; Zaefarian F; Wester TJ; Girish CK; Chrystal PV; Ravindran VStandardized ileal digestibility coefficients (SIDC) of nitrogen (N) and amino acids (AA) in two protein sources (soybean meal [SBM] and canola meal [CM]) were investigated at six broiler ages (d 7, 14, 21, 28, 35, and 42). Two assay diets were formulated to contain either SBM (413 g/kg) or CM (553 g/kg) as the sole dietary AA source. Titanium dioxide (5 g/kg) was added as an indigestible marker. A total of 696 male broilers at 1 d old were allotted to 12 replicate cages per age group. Each assay diet was offered to birds for 4 d prior to the ileal digesta collection on d 7 (14 birds/cage), 14 (12 birds/cage), 21 (10 birds/cage), 28 (8 birds/cage), 35 (8 birds/cage) and 42 (6 birds/cage), respectively. The apparent digestibility coefficients were standardized using age-specific basal endogenous AA flows. In the SBM group, though the SIDC of N tended to be influenced (quadratic; P = 0.075) by age, no linear or quadratic response of age effect was observed on the average SIDC of indispensable (IAA) and total AA (TAA). An age effect (quadratic; P < 0.05) was observed on the average SIDC of dispensable AA (DAA) in SBM with the highest value recorded at d 7, followed by a decrease from d 14 to 28, which increased beyond d 35. The SIDC of some individual AA (Arg, Thr, Trp, Cys, Pro) were affected (P < 0.05 or P < 0.001) in a quadratic manner by age. In the CM, the SIDC of N, average SIDC of IAA, DAA and TAA were influenced (quadratic; P < 0.05 or P < 0.001) by age. The SIDC of N and average SIDC of DAA and TAA were higher from d 7 to 14, declined at d 21, and then increased beyond d 28. The average SIDC of IAA was low between d 7 and 28 and increased thereafter. The SIDC of individual AA were affected (linear or quadratic; P < 0.05 or P < 0.001) by different magnitudes by age. The age influence on the SIDC AA was variable, depending on the protein source and AA. The results demonstrate that age-specific SIDC AA data might need consideration in broiler feed formulations.Item In vitro digestibility of dietary proteins and in vitro DIAAS analytical workflow based on the INFOGEST static protocol and its validation with in vivo data(Elsevier Ltd, 2023-03-15) Sousa R; Recio I; Heimo D; Dubois S; Moughan PJ; Hodgkinson SM; Portmann R; Egger LThe FAO recommends the digestible indispensable amino acid score (DIAAS) to determine protein quality in foods, preferably tested in vivo. Here, the INFOGESTin vitrodigestion protocol was applied and supplemented with an analytical workflow allowing the assessment of protein digestibility and DIAAS calculation. The protocol was applied to selected samples WPI, zein, collagen, black beans, pigeon peas, All-Bran®, and peanuts. The total protein digestibility, digestibility of individual amino acids (AA), and DIAAS values were established and compared with in vivo data for the same substrates. Total protein digestibility (total Nitrogen, r = 0.7, P < 0.05; primary amines (OPA), r = 0.6, P < 0.02; total AA, r = 0.6, P < 0.02) and digestibility of individual AA (r = 0.6, P < 0.0001) were in good agreement, between in vitro and in vivo, with a mean difference of 1.2 %. In vitro DIAAS was highly correlated with DIAAS obtained from in vivo true ileal digestibility values (r = 0.96, R2 = 0.89, P < 0.0001) with a mean difference of 0.1 %.Item Protein quality as a complementary functional unit in life cycle assessment (LCA).(Springer Nature, 2022-12-28) McAuliffe GA; Takahashi T; Beal T; Huppertz T; Leroy F; Buttriss J; Collins AL; Drewnowski A; McLaren SJ; Ortenzi F; van der Pols JC; van Vliet S; Lee MRFGOAL AND THEORETICAL COMMENTARY: A number of recent life cycle assessment (LCA) studies have concluded that animal-sourced foods should be restricted-or even avoided-within the human diet due to their relatively high environmental impacts (particularly those from ruminants) compared with other protein-rich foods (mainly protein-rich plant foods). From a nutritional point of view, however, issues such as broad nutrient bioavailability, amino acid balances, digestibility and even non-protein nutrient density (e.g., micronutrients) need to be accounted for before making such recommendations to the global population. This is especially important given the contribution of animal sourced foods to nutrient adequacy in the global South and vulnerable populations of high-income countries (e.g., children, women of reproductive age and elderly). Often, however, LCAs simplify this reality by using 'protein' as a functional unit in their models and basing their analyses on generic nutritional requirements. Even if a 'nutritional functional unit' (nFU) is utilised, it is unlikely to consider the complexities of amino acid composition and subsequent protein accretion. The discussion herein focuses on nutritional LCA (nLCA), particularly on the usefulness of nFUs such as 'protein,' and whether protein quality should be considered when adopting the nutrient as an (n)FU. Further, a novel and informative case study is provided to demonstrate the strengths and weaknesses of protein-quality adjustment. CASE STUDY METHODS: To complement current discussions, we present an exploratory virtual experiment to determine how Digestible Indispensable Amino Acid Scores (DIAAS) might play a role in nLCA development by correcting for amino acid quality and digestibility. DIAAS is a scoring mechanism which considers the limiting indispensable amino acids (IAAs) within an IAA balance of a given food (or meal) and provides a percentage contribution relative to recommended daily intakes for IAA and subsequent protein anabolism; for clarity, we focus only on single food items (4 × animal-based products and 4 × plant-based products) in the current case exemplar. Further, we take beef as a sensitivity analysis example (which we particularly recommend when considering IAA complementarity at the meal-level) to elucidate how various cuts of the same intermediary product could affect the interpretation of nLCA results of the end-product(s). RECOMMENDATIONS: First, we provide a list of suggestions which are intended to (a) assist with deciding whether protein-quality correction is necessary for a specific research question and (b) acknowledge additional uncertainties by providing mitigating opportunities to avoid misinterpretation (or worse, dis-interpretation) of protein-focused nLCA studies. We conclude that as relevant (primary) data availability from supply chain 'gatekeepers' (e.g., international agri-food distributors and processors) becomes more prevalent, detailed consideration of IAA provision of contrasting protein sources needs to be acknowledged-ideally quantitatively with DIAAS being one example-in nLCA studies utilising protein as a nFU. We also contend that future nLCA studies should discuss the complementarity of amino acid balances at the meal-level, as a minimum, rather than the product level when assessing protein metabolic responses of consumers. Additionally, a broader set of nutrients should ideally be included when evaluating "protein-rich foods" which provide nutrients that extend beyond amino acids, which is of particular importance when exploring dietary-level nLCA.Item Modifying quinoa protein for enhanced functional properties and digestibility: A review(Elsevier B V, 2023-10-05) Cui H; Li S; Roy D; Guo Q; Ye AQuinoa (Chenopodium quinoa Willd.) is a pseudocereal plant that originally came from South America. The trend of consuming quinoa is propelled by its well‒balanced amino acid profile compared to that of other plants. In addition, its gluten‒free nature makes quinoa a promising diet option for celiac disease patients. Protein accounts for approximately 17% of the quinoa seed composition and quinoa protein possesses excellent quality. Quinoa protein is mainly composed of 11S globulins (37%) and 2S albumins (35%), both of which are stabilized by disulfide bonds. To date, the alkaline extraction method is the most commonly used method to extract quinoa protein. The functional properties and digestibility of quinoa protein can be improved with the help of various modification methods, and as a result, the application of quinoa protein will be extended. In this review, the extraction method, modification of functional properties and digestibility of quinoa protein are thoroughly discussed, providing insights into the application of quinoa protein in plant‒based foods.
